Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

A new series of dense graphs of high girth


Authors: F. Lazebnik, V. A. Ustimenko and A. J. Woldar
Journal: Bull. Amer. Math. Soc. 32 (1995), 73-79
MSC: Primary 05C35
MathSciNet review: 1284775
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k \geq 1$ be an odd integer, $ {t = \left\lfloor {\tfrac{{k + 2}}{4}} \right\rfloor}$, and q be a prime power. We construct a bipartite, q-regular, edge-transitive graph $ CD(k,q)$ of order $ \upsilon \leq 2{q^{k - t + 1}}$ and girth $ g \geq k + 5$. If e is the the number of edges of $ CD(k,q)$, then $ e = \Omega ({{\upsilon ^{1 + \frac{1}{{k - t + 1}}}}})$. These graphs provide the best known asymptotic lower bound for the greatest number of edges in graphs of order $ \upsilon $ and girth at least g, $ g \geq 5$, $ g \ne 11$, 12. For $ g \geq 24$, this represents a slight improvement on bounds established by Margulis and Lubotzky, Phillips, Sarnak; for $ 5 \leq g \leq 23$, $ g \ne 11$, 12, it improves on or ties existing bounds.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC: 05C35

Retrieve articles in all journals with MSC: 05C35


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1995-00569-0
PII: S 0273-0979(1995)00569-0
Article copyright: © Copyright 1995 American Mathematical Society