Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Galois representations and modular forms


Author: Kenneth A. Ribet
Journal: Bull. Amer. Math. Soc. 32 (1995), 375-402
MSC: Primary 11F80; Secondary 11-02, 11D41, 11G05
MathSciNet review: 1322785
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, I discuss material which is related to the recent proof of Fermat's Last Theorem: elliptic curves, modular forms, Galois representations and their deformations, Frey's construction, and the conjectures of Serre and of Taniyama-Shimura.


References [Enhancements On Off] (What's this?)

  • [1] A. Ash and R. Gross, Generalized reciprocity laws: A context for Wiles's achievement (in preparation).
  • [2] A. O. L. Atkin and J. Lehner, Hecke operators on Γ₀(𝑚), Math. Ann. 185 (1970), 134–160. MR 0268123
  • [3] C. Batut, D. Bernardi, H. Cohen and M. Olivier, GP/PARI, Available by anonymous ftp from megrez.math.u-bordeaux.fr or math.ucla.edu in the directory /pub/pari.
  • [4] B. J. Birch and W. Kuyk (eds.), Modular functions of one variable. IV, Lecture Notes in Mathematics, Vol. 476, Springer-Verlag, Berlin-New York, 1975. MR 0376533
  • [5] W. Bosma and H. W. Lenstra Jr., Complete systems of two addition laws for elliptic curves, J. Number Theory 53 (1995), no. 2, 229–240. MR 1348761, 10.1006/jnth.1995.1088
  • [6] N. Boston, A Taylor-made plug for Wiles' proof, College Math. J. 26 (1995), 100-105.
  • [7] Nigel Boston and Andrew Granville, Reviews: The World’s Most Famous Math Problem (The Proof of Fermat’s Last Theorem and Other Mathematical Mysteries), Amer. Math. Monthly 102 (1995), no. 5, 470–473. MR 1542699, 10.2307/2975048
  • [8] K. M. Buzzard, The levels of modular representations, Cambridge University thesis, 1995.
  • [9] Henri Carayol, Sur les représentations 𝑙-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468 (French). MR 870690
  • [10] J. H. Coates and S. T. Yau, eds., Elliptic curves and modular forms, Proceedings of a conference held in Hong Kong, December 18-21, 1993, International Press, Cambridge, MA, and Hong Kong (to appear).
  • [11] I. Connell, Apecs (arithmetic of plane elliptic curves)--A program written in Maple, Available by anonymous ftp from math.mcgill.ca in the directory /pub/apecs.
  • [12] Gary Cornell and Joseph H. Silverman (eds.), Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984. MR 861969
  • [13] David A. Cox, Introduction to Fermat’s last theorem, Amer. Math. Monthly 101 (1994), no. 1, 3–14. MR 1252700, 10.2307/2325116
  • [14] G. Darmon, The Shimura-Taniyama conjecture (after Wiles), Uspekhi Mat. Nauk 50 (1995), no. 3(303), 33–82 (Russian); English transl., Russian Math. Surveys 50 (1995), no. 3, 503–548. MR 1349319, 10.1070/RM1995v050n03ABEH002108
  • [15] -, Serre's conjectures, in [55].
  • [16] Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975) (French). MR 0379379
  • [17] Fred Diamond, The refined conjecture of Serre, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 22–37. MR 1363493
  • [18] -, On deformation rings and Hecke rings (submitted).
  • [19] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, 10.1007/BF01388432
  • [20] Matthias Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), no. 2, 307–327. MR 1172693, 10.1007/BF01232029
  • [21] Jean-Marc Fontaine, Il n’y a pas de variété abélienne sur 𝑍, Invent. Math. 81 (1985), no. 3, 515–538 (French). MR 807070, 10.1007/BF01388584
  • [22] Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
  • [23] Gerhard Frey, Links between stable elliptic curves and certain Diophantine equations, Ann. Univ. Sarav. Ser. Math. 1 (1986), no. 1, iv+40. MR 853387
  • [24] G. Frey, Links between elliptic curves and solutions of 𝐴-𝐵=𝐶, J. Indian Math. Soc. (N.S.) 51 (1987), 117–145 (1988). MR 988312
  • [25] Stephen Gelbart, Automorphic forms and Artin’s conjecture, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn., Bonn, 1976) Springer, Berlin, 1977, pp. 241–276. Lecture Notes in Math., Vol. 627. MR 0568306
  • [26] P. Gérardin and J.-P. Labesse, The solution of a base change problem for 𝐺𝐿(2) (following Langlands, Saito, Shintani), Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 115–133. MR 546613
  • [27] Fernando Q. Gouvêa, Deforming Galois representations: controlling the conductor, J. Number Theory 34 (1990), no. 1, 95–113. MR 1039770, 10.1016/0022-314X(90)90055-V
  • [28] Fernando Q. Gouvêa, “A marvelous proof”, Amer. Math. Monthly 101 (1994), no. 3, 203–222. MR 1264001, 10.2307/2975598
  • [29] -, Deforming Galois representations: A survey, in [55].
  • [30] B. Hayes and K. A. Ribet, Fermat's Last Theorem and modern arithmetic, Amer. Sci. 82 (1994), 144-156.
  • [31] William R. Hearst III and Kenneth A. Ribet, Book Review: Rational points on elliptic curves, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 2, 248–252. MR 1568092, 10.1090/S0273-0979-1994-00465-3
  • [32] M. Hindry, "a, b, c", conducteur, discriminant, Publ. Math. Univ. Pierre et Marie Curie, Problèmes diophantiens (1986-87).
  • [33] Allyn Jackson, Update on proof of Fermat’s last theorem, Notices Amer. Math. Soc. 41 (1994), no. 3, 185–186. MR 1261593
  • [34] -, Another step toward Fermat, Notices Amer. Math. Soc. 42 (1995), 48.
  • [35] A. W. Knapp, Elliptic curves, Math. Notes, vol. 40, Princeton Univ. Press, Princeton, NJ, 1992.
  • [36] Serge Lang, Introduction to modular forms, Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, No. 222. MR 0429740
  • [37] Serge Lang, Abelian varieties, Springer-Verlag, New York-Berlin, 1983. Reprint of the 1959 original. MR 713430
  • [38] -, The Taniyama-Shimura file, Available directly from S. Lang, Math. Dept., Yale Univ.
  • [39] Serge Lang, Old and new conjectured Diophantine inequalities, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 1, 37–75. MR 1005184, 10.1090/S0273-0979-1990-15899-9
  • [40] Robert P. Langlands, Base change for 𝐺𝐿(2), Annals of Mathematics Studies, vol. 96, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 574808
  • [41] H. W. Lenstra, Jr., Complete intersections and Gorenstein rings, in [10].
  • [42] Wen Ch’ing Winnie Li, Newforms and functional equations, Math. Ann. 212 (1975), 285–315. MR 0369263
  • [43] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
  • [44] P. A. van Mulbregt and J. H. Silverman, Elliptic curve calculator, Available by anonymous ftp from gauss.math.brown.edu in the directory /dist/EllipticCurve.
  • [45] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). MR 488287
  • [46] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, 10.1007/BF01390348
  • [47] B. Mazur, Deforming Galois representations, Galois groups over 𝑄 (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 385–437. MR 1012172, 10.1007/978-1-4613-9649-9_7
  • [48] B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), no. 7, 593–610. MR 1121312, 10.2307/2324924
  • [49] -, Very rough course notes for Math 257y, (parts I-III to appear as Galois Deformations and Hecke Curves).
  • [50] -, Questions about number, New Directions in Mathematics, Cambridge Univ. Press, Cambridge (to appear).
  • [51] B. Mazur and J. Tilouine, Représentations galoisiennes, différentielles de Kähler et “conjectures principales”, Inst. Hautes Études Sci. Publ. Math. 71 (1990), 65–103 (French). MR 1079644
  • [52] Toshitsune Miyake, On automorphic forms on 𝐺𝐿₂ and Hecke operators, Ann. of Math. (2) 94 (1971), 174–189. MR 0299559
  • [53] Toshitsune Miyake, Modular forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004
  • [54] V. Kumar Murty, Introduction to abelian varieties, CRM Monograph Series, vol. 3, American Mathematical Society, Providence, RI, 1993. MR 1231797
  • [55] -, ed., Elliptic curves, Galois representations and modular forms, CMS Conf. Proc., Amer. Math. Soc., Providence, RI (to appear).
  • [56] Joseph Oesterlé, Nouvelles approches du “théorème” de Fermat, Astérisque 161-162 (1988), Exp. No. 694, 4, 165–186 (1989) (French). Séminaire Bourbaki, Vol. 1987/88. MR 992208
  • [57] A. P. Ogg, Elliptic curves and wild ramification, Amer. J. Math. 89 (1967), 1–21. MR 0207694
  • [58] D. Prasad, Ribet's Theorem: Shimura-Taniyama-Weil implies Fermat, in [55].
  • [59] Ravi Ramakrishna, On a variation of Mazur’s deformation functor, Compositio Math. 87 (1993), no. 3, 269–286. MR 1227448
  • [60] Kenneth A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1977, pp. 17–51. Lecture Notes in Math., Vol. 601. MR 0453647
  • [61] Kenneth A. Ribet, Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 503–514. MR 804706
  • [62] K. A. Ribet, On modular representations of 𝐺𝑎𝑙(\overline{𝑄}/𝑄) arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476. MR 1047143, 10.1007/BF01231195
  • [63] Kenneth A. Ribet, From the Taniyama-Shimura conjecture to Fermat’s last theorem, Ann. Fac. Sci. Toulouse Math. (5) 11 (1990), no. 1, 116–139 (English, with English and French summaries). MR 1191476
  • [64] Kenneth A. Ribet, Abelian varieties over 𝑄 and modular forms, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53–79. MR 1212980
  • [65] Kenneth A. Ribet, Wiles proves Taniyama’s conjecture; Fermat’s last theorem follows, Notices Amer. Math. Soc. 40 (1993), no. 6, 575–576. MR 1228162
  • [66] -, Modular elliptic curves and Fermat's Last Theorem: A lecture presented at George Washington University, Washington, DC, August 1993, Selected Lectures in Math., Amer. Math. Soc., Providence, RI, 1993 (videotape).
  • [67] -, Report on mod $ {\ell}$ representations of $ {{\text{Gal}}(\bar {\textbf{Q}}/{\textbf{Q}})}$, Proc. Sympos. Pure Math., vol. 55, part 2, Amer. Math. Soc., Providence, RI, 1994, pp. 639-676.
  • [68] K. Rubin and A. Silverberg, A report on Wiles’ Cambridge lectures, Bull. Amer. Math. Soc. (N.S.) 31 (1994), no. 1, 15–38. MR 1256978, 10.1090/S0273-0979-1994-00512-9
  • [69] -, Families of elliptic curves with constant mod p representations, in [10].
  • [70] J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Sém. Delange-Pisot-Poitou, no. 19 (1969-70), Institut Henri Poincaré, Paris, 1970-71; also in Collected Papers, Vol. II, pp. 581-592.
  • [71] Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 0387283
  • [72] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French; Graduate Texts in Mathematics, No. 7. MR 0344216
  • [73] J.-P. Serre, Lettre à J.-F. Mestre, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 263–268 (French). MR 902597, 10.1090/conm/067/902597
  • [74] Jean-Pierre Serre, Sur les représentations modulaires de degré 2 de 𝐺𝑎𝑙(\overline{𝑄}/𝑄), Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, 10.1215/S0012-7094-87-05413-5
  • [75] Jean-Pierre Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York, 1988. Translated from the French. MR 918564
  • [76] Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 0236190
  • [77] G. Shimura, An $ {\ell}$-adic method in the theory of automorphic forms, 1968 (unpublished).
  • [78] Goro Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew. Math. 221 (1966), 209–220. MR 0188198
  • [79] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766
  • [80] Goro Shimura, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J. 43 (1971), 199–208. MR 0296050
  • [81] Goro Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math. (2) 95 (1972), 130–190. MR 0314801
  • [82] Goro Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523–544. MR 0318162
  • [83] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210
  • [84] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368
  • [85] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 33–52. Lecture Notes in Math., Vol. 476. MR 0393039
  • [86] -, The non-existence of certain Galois extensions of $ {\mathbb{Q}}$ unramified outside 2, Arithmetic Geometry (N. Childress and J. W. Jones, eds.), Contemp. Math., vol. 174, Amer. Math. Soc., Providence, RI, 1994, pp. 153-156.
  • [87] Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, 10.2307/2118560
  • [88] Jerrold Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173–175. MR 621884, 10.1090/S0273-0979-1981-14936-3
  • [89] Marilyn vos Savant, The world’s most famous math problem, St. Martin’s Press, New York, 1993. The proof of Fermat’s last theorem and other mathematical mysteries. MR 1282729
  • [90] Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, 10.2307/2118559

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC: 11F80, 11-02, 11D41, 11G05

Retrieve articles in all journals with MSC: 11F80, 11-02, 11D41, 11G05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1995-00616-6
Article copyright: © Copyright 1995 American Mathematical Society