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Invariant subspace problems very often combine operator methods and complex
function theory in a fruitful mix. In some notable cases, their study has led to
extensive generalizations and applications. The present volume is a neat instance
of the continuing development of invariant subspace ideas that originated a half-
century ago.

Beurling’s characterization of the invariant subspaces of the shift operator [4]
opened the way to numerous developments in modern analysis including a new
approach to interpolation theory [12]. In a related direction, a new class of Hilbert
spaces was introduced by L. de Branges and the reviewer [7] in an attempt on the
still open question of existence of invariant subspaces for Hilbert space operators.
Beurling’s theory is a particular case: the prototypical situation is an invariant
subspace of the shift operator and its orthogonal complement. The new spaces have
not solved the original problem of existence of invariant subspaces, but they have
found other uses. In a different guise, the spaces made a startling appearance in
de Branges’ theory of coefficient estimates and led to the proof [5] of the Bieberbach
conjecture. At about the same time, Sarason became interested in the spaces and
wrote the first [13] of a series of papers developing especially connections with
function theory in the unit disk. In 1989, Sarason presented a series of lectures
on this topic at a conference which was held at the University of Arkansas. The
present volume is a version of these lectures.

Let H? be the space of functions on the unit disk D which are representable as
power series f(2) = 3200 a,z" with [[f]|* = 0% |an|? < co. We view H? as
a subspace of L? on the unit circle by replacing convergent power series by their
boundary functions. The Lebesgue spaces LP are defined with respect to normalized
Lebesgue measure on 0D. Let H* be the space of bounded analytic functions on D
in the supremum norm, which we sometimes view as a subspace of L in a similar
way. These are particular cases of the standard Hardy classes H? for 1 < p < oc.
Each ¢ in L* induces a Toeplitz operator T}, on H? defined by T, f = Py(¢f),
where P, is the projection of L? on H?.

The sub-Hardy spaces of the title refer to certain Hilbert spaces of holomorphic
functions which are linear subspaces of H? but have different norms. They are
induced by a function b € H* of norm at most one and include the Hilbert space
M(b) with reproducing kernel

b(2)b(w)
1—zw’

(1)

and the Hilbert space H(b) with reproducing kernel

1—b(2)b(w)
1—zw

(2)

These definitions show little of the nature of the spaces, however, and they are best
understood through equivalent forms. We give two such:
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Geometric approach.

A Hilbert space G is said to be contractively contained in a Hilbert space H
if G is a linear subspace of H and the inclusion mapping is a contraction. In this
case, we define a complementary space F as the set of vectors f in H such that

2 2
sup [[If +gllz — llgllg ] < oo
geg

It can be shown that F is a linear space and a Hilbert space in an inner product
such that the value of the supremum is || f Hi- It turns out that F is contractively
contained in H and the complementary space to F is G. If h = f + g with f € F
and g € G, then

2 2 2
12113 < If11% + llgllg -

Every h € 'H has a unique representation in this form for which equality holds. The
inclusions of F and G in ‘H are isometric if and only if the spaces intersect only in
the zero element, and in this case H = F @ G, the usual orthogonal direct sum.
This notion of complementary spaces thus generalizes orthogonal complementation
of closed subspaces of a Hilbert space.

Now let M(b) be the set of functions of the form bf with f € H? in the norm
such that multiplication by b is an isometry from H? onto M(b) (take M(b) to be
the zero space when b = 0). Then M(b) is contained contractively in H?, and we
may define H(b) to be the complementary space. It can be shown that M (b) and
H(b) have reproducing kernels (1) and (2), so the definitions are equivalent.

Operator-theoretic approach.

If A is a contraction operator from a Hilbert space H; into a Hilbert space H, its
range M(A) is a Hilbert space in a unique inner product which makes A a partial
isometry from H; onto H. By H(A) is meant the space M(B) where B is any
operator such that 1 — AA* = BB*. This definition is independent of the choice
of B because two spaces M(B1) and M(B5) are equal isometrically if and only if
BB} = ByBj. In particular, we can always choose B = (1 — AA*)'/2,

The Toeplitz operator Ty is multiplication by b on H?2. Define M(b) to be
M(T}), and let H(b) be H(T}). Then M(b) is contractively contained in H? and
its complementary space is H(b). Hence the spaces are the same as before. The
operator approach has been discovered independently by a number of people. The
reviewer learned it in seminar lectures of M. Rosenblum in the late 1960’s.

More generally, for each ¢ € L*™ let M(y), H(yp) be the spaces M(T,), H(T,)

induced by the Toeplitz operator T,,. The space H(b) corresponding to the choice

©(e") = b(ei?) plays an important role in the theory. So do the spaces M(a), H(a)
defined for the outer function a such that a(0) > 0 and

a(e) 2 +[b(e”) = 1

a.e. on 0D, whenever such a function exists. According to a classic theorem of
Szegd, the function a is defined if and only if log [1 — [b(e?)[?] € L'. It is known
that this occurs if and only if b is not an extreme point of the unit ball in H°.
Accordingly, we speak of extreme point and nonextreme point cases in the
theory. The extreme point case includes inner functions.
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The shift operator on H? and its adjoint are given by

S:f(z) = 2f(2), 8§ :f(z) = [f(2) = f(O)]/=

The operator S* leaves H(b) invariant, and the restriction X = S*|H(b) is a con-
traction relative to the norm of H(b). The extreme point case is characterized by
the fact that the identity

1X £ll3y = £ 13 — 1£(O)]

holds for all f in H(b). In the nonextreme point case, it turns out that H(b) is also

invariant under S, and then the operator Y = S|H(b) has a special role to play.
The spaces H(b) and H(b) are characterized as Cauchy transforms of weighted

Hardy classes. For example, let u be the positive measure on 9D which appears in

the Herglotz-Riesz representation

1+b(z) e + 2 o
1_b(z>_/8D ew_zdu(e ) + ic, c

I
Ql

Let H?(2) be the closure of the polynomials in L*(y). An isometry is then defined
by mapping the function q(e?®) in H?(u) to

iﬁ)

1) = (1-06) [ 50 e,

op 1—e 12

This construction can be repeated with b replaced by \b for any A € 9D since
H(b) is unchanged by this substitution; the Herglotz-Riesz measure is denoted py.
The space H(b) has a similar characterization relative to the measure on D with
density 1 — [b(e?)|2.

In general it is not easy to identify the functions which belong to H(b). There are,
however, situations in which the elements of the space can be completely character-
ized. By a Helson-Szeg6 measure we mean an absolutely continuous measure on
0D whose density has the form exp(x + §) where x and y are real-valued functions
in L> and ||ly| . < 7/2 (7 is the conjugate function of y). Functions g, g € H*
are called a corona pair if |g1(z)| + |g2(z)| is bounded away from zero on D. A
function ¢ € H* is a multiplier of H(b) if ¢ f belongs to H(b) for every f in H(b).

Theorem. In the nonextreme point case, the following assertions are equivalent:
1. H(b) = M(a);
2. for some A € 0D, uy is a Helson-Szegé measure;
3. for all N € 0D, uy is a Helson-Szeqgd measure;
4. a,b form a corona pair and T, 5 is invertible;
5. every function in H* is a multiplier of H(b);
6. Y is similar to S.

Various conditions imply the equality of H(b) and H(b).

Theorem. In the extreme point case, the following assertions are equivalent:
1. H(b) = H(b);
2. b is invertible in H®;
3. X 1is similar to a unitary operator.
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The nonextreme point case is developed in other directions. Then M (a) is dense
in H(b) if and only if Y is quasisimilar to S. This turns out to be related to the
notion of rigid functions and exposed points of the unit ball of H*.

Other topics treated in the book include an elegant account of angular derivatives
and the Denjoy-Wolff theorem by Hilbert space methods. The spectral properties
of X and Y are detailed. There is a theory of multipliers, and the measures that
appear in Cauchy representations are studied.

The slim size of the book belies its content. The volume is densely packed
with ideas. Proofs are clear and concise. The book is well organized and easy to
navigate, making it suitable for self-study and informal seminars. It should become
a standard source for Hilbert space methods in function theory on the unit disk.

A comprehensive account of the subject is probably not possible, at least at this
time, and there are other directions of current interest. Among omitted topics are
vector and indefinite generalizations, applications to interpolation, operator colli-
gations, and linear systems; for example, see [1-3, 6, 8-11]. Future developments
will hopefully also address the parallel theory of logarithmic versions of (2) which
occurs in de Branges’ theory of coefficient estimates and their truncated versions.
We remark that the character and goals of [7] are different, and the reviewer hopes
it might continue to be consulted.

The author is to be congratulated and thanked not only on his contributions to
the subject but also for putting his view forward in this timely exposition.
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