Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Stuart S. Antman
Title: Nonlinear problems of elasticity
Additional book information: Appl. Math. Sci., vol. 107, Springer-Verlag, Berlin and New York, 1995, xviii + 750 pp., ISBN 0-377-94199-1, $59.95

References [Enhancements On Off] (What's this?)

  • 1. S S Antman and J E Osborn. The principle of virtual work and integral laws of motion. Arch. Rat. Mech. Anal., 69:231--262, 1979. MR 80d:73020
  • 2. J M Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal., 63:337--403, 1977. MR 57:14788
  • 3. K Bhattacharya, N B Firoozye, R D James, and R V Kohn. Restrictions on microstructure. Proc. Royal Soc. Edinburgh, 124A:843--878, 1994. MR 95i:73025
  • 4. P G Ciarlet. Mathematical Elasticity, Vol.I: Three-Dimensional Elasticity. North-Holland, 1988. MR 89e:73001
  • 5. P G Ciarlet and J Ne\v{c}as. Unilateral problems in nonlinear three-dimensional elasticity. Arch. Rat. Mech. Anal., 87:319--338, 1985. MR 86e:73030
  • 6. P J Davies. Buckling and barrelling instabilities in finite elasticity. J. Elasticity, 21:147--192, 1989. MR 90m:73033
  • 7. P J Davies. Buckling and barrelling instabilities of nonlinearly elastic columns. Quarterly Applied Maths., 49:407--426, 1991. MR 92m:73071
  • 8. L Euler. Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimivi proprietate gaudentes. Bousquent, Lausanne, 1744. In Opera Omnia I, Vol. 24, 231-297.
  • 9. L C Evans. Quasiconvexity and partial regularity in the calculus of variations. Arch. Rat. Mech. Anal., 95:227--268, 1986. MR 88a:49007
  • 10. R L Fosdick and R T Shield. Small bending of a circular bar superposed on finite extension or compression. Arch. Rat. Mech. Anal., 12:223--248, 1963. MR 26:3265
  • 11. J E Marsden and T J R Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, 1983. MR 95h:73022
  • 12. A Mielke. Saint-Venant's problem and semi-inverse solutions in nonlinear elasticity. Arch. Rat. Mech. Anal., 102:205--229, 1988. Corrigendum ibid. 110::351-352, 1990. MR 89h:73016; MR 91f: 73009
  • 13. C B Morrey. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math., 2:25--53, 1952. MR 14:992a
  • 14. C B Morrey. Multiple Integrals in the Calculus of Variations. Springer, 1966. MR 34:2380
  • 15. S Müller, T. Qi, and B S Yan. On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré,Analyse Nonlinéaire, 11:217--243, 1994. MR 95a:73025
  • 16. V \v{S}verák. Rank-one convexity does not imply quasiconvexity. Proc. Royal Soc. Edinburgh, 120A:185--189, 1992. MR 93b:49026
  • 17. T Valent. Boundary Value Problems of Finite Elasticity, volume 31 of Springer Tracts in Natural Philosophy. Springer-Verlag, 1988. MR 89c:73001
  • 18. L M Zubov and A N Rudev. On the peculiarities of the loss of stability of a non-linear elastic rectangular bar. J. Appl. Maths Mechs, 57:469--485, 1993. (English translation of Prikl. Mat. Mekh., 57:65-83, 1993.). MR 94j:73036

Review Information:

Reviewer: J. M. Ball
Affiliation: Heriot-Watt University
Journal: Bull. Amer. Math. Soc. 33 (1996), 269-276
Review copyright: © Copyright 1996 American Mathematical Society
American Mathematical Society