Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Tight closure


Author: Winfried Bruns
Journal: Bull. Amer. Math. Soc. 33 (1996), 447-457
MSC (1991): Primary 13A35, 13A50, 13B21, 13D25, 13H10, 14B05
DOI: https://doi.org/10.1090/S0273-0979-96-00691-X
MathSciNet review: 1397097
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of tight closure was created by Mel Hochster and Craig Huneke about ten years ago. Assisted by numerous contributions of others, they have continuously developed the theory since then. `Tight closure' can now be regarded as a synonym for `characteristic $p$ methods in commutative algebra'. It ties several strands of commutative algebra and algebraic geometry together: invariant theory, rational singularities, the Briançon--Skoda theorem, the `homological conjectures', big Cohen--Macaulay modules and algebras, and various other topics.


References [Enhancements On Off] (What's this?)

  • [Ab] I. Aberbach, Finite phantom projective dimension, Amer. J. Math. 116 (1994), 447--477. MR 95c:13012
  • [AHH] I. Aberbach, M. Hochster, and C. Huneke, Localization of tight closure and modules of finite phantom homology, J. Reine Angew. Math. 434 (1993), 67--114. MR 94h:13005
  • [AH] I. M. Aberbach and C. Huneke, A theorem of Briançon-Skoda type for regular local rings containing a field, Proc. Amer. Math. Soc., to appear. CMP 95:03
  • [Bou] J.-F. Boutot, Singularités rationelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), 65--68. MR 88a:14005
  • [BrS] J. Briancon and H. Skoda, Sur la clôture intégrale d'un idéal de germes de fonctions holomerphes en un point de $C^n$, C. R. Acad. Sc. Paris Sér. A 278 (1974), 949--951. MR 49:5394
  • [BH] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge studies in advanced mathematics 39, Cambridge University Press 1993. MR 95h:13020
  • [CH] A. Conca and J. Herzog, Ladder determinantal ideals have rational singularities, Adv. in Math., to appear.
  • [FW] R. Fedder and K.-I. Watanabe, A characterization of $F$-regularity in terms of $F$-purity, in Commutative Algebra, Math. Sci. Research Inst. Publ. 15, Springer-Verlag 1989, 227--245. MR 91k:13009
  • [Gl] D. Glassbrenner, Strong $F$-regularity in images of regular rings, Proc. Amer. Math. Soc. 124 (1996), 345--353.
  • [HanM] C. Han and P. Monsky, Some surprising Hilbert--Kunz functions, Math. Z. 214 (1993), 119--135. MR 94h:13008
  • [Hara] N. Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, preprint.
  • [Ho1] M. Hochster, Topics in the homological theory of modules over commutative rings, C.B.M.S. Regional Conf. Ser. in Math. 24 Amer. Math. Soc. 1975. MR 51:8096
  • [Ho2] ------, Solid closure, Contemp. Math. 159 (1994), 103--172. MR 95a:13011
  • [HH1] M. Hochster and C. Huneke, Tight closure and strong $F$-regularity, Mem. Soc. Math. France 38 (1989), 119--133. MR 91i:13025
  • [HH2] ------, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31--116. MR 91g:13010
  • [HH3] ------, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. Math. 135 (1992), 53--89. MR 92m:13023
  • [HH4] ------, Phantom homology, Mem. Amer. Math. Soc. Vol. 103, No. 490 (1993), 1--91. MR 93j:13020
  • [HH5] ------, F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 1--62. MR 95d:13007
  • [HH6] ------, Tight closures of parameter ideals and splitting in module-finite extensions, J. Alg. Geom. 3 (1994), 599--670. MR 95k:13002
  • [HH7] ------, Applications of the existence of big Cohen-Macaulay algebras, Adv. in Math. 113 (1995), 45--117. CMP 95:13
  • [HR1] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math. 13 (1974), 115--175. MR 50:311
  • [HR2] ------, The purity of the Frobenius and local cohomology, Adv. in Math. 21 (1976), 117--172. MR 54:5230
  • [Hu1] C. Huneke, An algebraist commuting in Berkeley, Math. Intell. 11 (1989), 40--52. MR 89m:13001
  • [Hu2] ------, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992), 203--223. MR 93b:13027
  • [Hu3] ------, Tight closure and applications, C.B.M.S. Regional Conf. Ser. in Math. 88, Amer. Math. Soc. 1996.
  • [HSm1] C. Huneke and K. Smith, Arithmetic Macaulayfication and tight closure, Ill. J. Math., to appear.
  • [HSm2] ------, Tight closure and the Kodaira vanishing theorem, preprint.
  • [Ku] E. Kunz. Characterizations of regular rings of characteristic p, Amer. J. Math. 41 (1969), 772--784. MR 40:5609
  • [LS] J. Lipman and A. Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981), 199--222. MR 83m:13001
  • [LT] J. Lipman and B. Teissier, Pseudo-rational local rings and a theorem ob Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), 97--116. MR 82f:14004
  • [PS] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S. 42 (1973), 323--395. MR 51:10330
  • [Ro] P. Roberts, Two applications of dualizing complexes over local rings, Ann. Sci. Ec. Norm. Sup. (4) 9 (1976), 103--106. MR 53:2926
  • [Sm1] K. E. Smith, F-rational rings have rational singularities, Amer. J. Math., to appear.
  • [Sm2] ------, Tight closure of parameter ideals, Invent. Math. 115 (1994), 41--60. MR 94k:13006
  • [Sm3] ------, Tight closure in graded rings, preprint.
  • [SVdB] K. E. Smith and M. Van den Bergh, Simplicity of rings of differential operators in prime characteristic, preprint.
  • [Sw] I. Swanson, Joint reductions, tight closure, and the Briançon--Skoda theorem II, J. Algebra 170 (1994), 567--583. MR 95m:13003
  • [Ve] J. Velez, Openness of the $F$-rational locus and smooth base change, J. Algebra, to appear.
  • [W1] K.-I. Watanabe, F-regular and F-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), 341--350. MR 92g:13003
  • [W2] ------, F-regular and F-pure rings vs. log-terminal and log-canonical singularities, preprint.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 13A35, 13A50, 13B21, 13D25, 13H10, 14B05

Retrieve articles in all journals with MSC (1991): 13A35, 13A50, 13B21, 13D25, 13H10, 14B05


Additional Information

Winfried Bruns
Affiliation: Universität Osnabrück, FB Mathematik/Informatik, 49069 Osnabrück, Germany
Email: Winfried.Bruns@mathematik.uni-osnabrueck.de

DOI: https://doi.org/10.1090/S0273-0979-96-00691-X
Keywords: Tight closure, characteristic $p$ methods, invariant theory, rational singularities, Briançon--Skoda theorem, homological conjectures, phantom homology
Received by editor(s): March 21, 1996
Received by editor(s) in revised form: May 27, 1996
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society