Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Singularities of Harmonic Maps


Author: Robert M. Hardt
Journal: Bull. Amer. Math. Soc. 34 (1997), 15-34
MSC (1991): Primary 58E20; Secondary 35J45, 35J50
DOI: https://doi.org/10.1090/S0273-0979-97-00692-7
MathSciNet review: 1397098
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article surveys research on the existence, structure, behavior, and asymptotics of singularities of harmonic maps.


References [Enhancements On Off] (What's this?)

  • 1. Adams, D.; Simon, L.: Rates of asymptotic convergence near isolated singularities of geometric extrema, Indiana Univ. Math. J. 37 no. 2, (1988), 225-254. MR 90b:58046
  • 2. Allard, W.K., Almgren, F.J., Jr.: On the radial behavior of minimal surfaces and the uniqueness of their tangent cones, Ann. of Math. (2) 113 (1981), 215-265. MR 83k:49069
  • 3. Almgren, F. J., Jr.: $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, Princeton University Preprint.
  • 4. Almgren, F.; Browder, W.; Lieb, E. H.: Co-area, liquid crystals, and minimal surfaces. Partial differential equations (Tianjin, 1986), Lecture Notes in Math., 1306, Springer, Berlin, 1988, 1-22. MR 91k:49058
  • 5. Almgren, F.J., Jr., Lieb, E.H.: Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples, and bounds. Ann. of Math. (2) 128 (1988), no. 3, 483-530. MR 91a:58049
  • 6. Bethuel, F.: A characterization of maps in $H\sp 1(B\sp 3,S\sp 2)$ which can be approximated by smooth maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), no. 4 269-286. MR 91f:58013
  • 7. Bethuel, F.: On the singular set of stationary harmonic maps, Manuscripta Math. 78 no. 4 (1993), 417-443. MR 94a:58047
  • 8. Bethuel, F., Brezis, H., Coron, J.-M.: Relaxed energies for harmonic maps. Variational methods (Paris, 1988), 37-52, Progr. Nonlinear Differential Equations Appl., 4, Birkhauser Boston, Boston, MA, 1990. MR 94a:58046
  • 9. Bethuel, F., Brezis, H., Hélein, F.: Tourbillons de Ginzburg-Landau et energie renormalisee, C. R. Acad. Sci. Paris Ser. I Math. 317 no. 2 (1993), 165-171. MR 94i:35030
  • 10. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, 13, Birkhauser Boston, Inc., Boston, MA, 1994. MR 95c:58044
  • 11. Bethuel, F., Coron, J.-M., Ghidaglia, J.-M., Soyeur, A.: Heat flows and relaxed energies for harmonic maps. Nonlinear diffusion equations and their equilibrium states, 99-109, Progr. Nonlinear Diff. Eqns. Appl., 7, Birkhauser, Boston, MA, 1992. MR 93d:58036
  • 12. Brezis, H., Coron, J.-M., Lieb, E.H.: Harmonic maps with defects. Comm. Math. Phys. 107 (1986), no. 4, 649-705. MR 88e:58023
  • 13. Burstal, F., Lemaire, L., Rawnsley, J.: Harmonic maps bibliography. http://bavi.unice.fr/Biblio/Math/harmonic.html .
  • 14. Carbou, G.: Regularity of critical points for a nonlocal energy, preprint.
  • 15. Chang, K.C., Ding, W.Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom. 36 (1992), no. 2, 507-515. MR 93h:58043
  • 16. Chen, Y.M., Ding, W.Y.: Blow-up and global existence for heat flows of harmonic maps. Invent. Math. 99 (1990), no.3, 567-578. MR 90m:58039
  • 17. Chen, B., Hardt, R.: Prescribing singularities for $p$-harmonic maps, Indiana Univ. Math. J. 44 (1995), no. 2, 575-602. MR 1:355 413
  • 18. Chen, J.: On energy minimizing mappings between and into singular spaces, Duke Math. J. 79 (1995), no. 1, 77-99. MR 96f:58041
  • 19. Chen, Y., Lin, F.H.: Remarks on approximate harmonic maps, Comment. Math. Helv. 70 (1995), no. 1, 161-169. MR 96d:58030
  • 20. Chen, Y., Lin, F.H.: Evolution of harmonic maps with Dirichlet boundary conditions, to appear in Comm. Anal. & Geometry.
  • 21. Chen, Y.M., Li, J., Lin, F.-H.: Partial regularity for weak heat flows into spheres, Comm. Pure Appl. Math. 48 (1995), no. 4, 429-448. MR 96e:58039
  • 22. Chen, Y.M., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), no. 1, 83-103. MR 90i:58031
  • 23. Cheng, X.: Estimate of the singular set of the evolution problem for harmonic maps, J. Differential Geom. 34 (1991), no. 1, 169-174. MR 92f:58046
  • 24. Cohen, R., Hardt, R., Kinderlehrer, D., Lin, S.-Y., Luskin, M.: Minimum energy configurations for liquid crystals: computational results, Theory and applications of liquid crystals, 99-121, IMA Vol. Math. Appl., 5, Springer, New York-Berlin, 1987. MR 88i:82055
  • 25. Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247-286. MR 95d:46033
  • 26. Coron, J.-M.: Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré, Analyse Non Linéaire 7 (1990) no. 4, 335-344. MR 91g:58058
  • 27. Coron, J.-M., Gulliver, R.: Minimizing $p$-harmonic maps into spheres, J. Reine Angew. Math. 401 (1989), 82-100. MR 90m:58040
  • 28. De Giorgi, E.: Frontiere orientate di misura minima. Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61 Editrice Tecnico Scientifica, Pisa, 1961. MR 57:31 3897
  • 29. Duzaar, F.: Regularity of $p$-harmonic maps into a closed hemisphere, Boll. Un. Mat. Ital. B (7) 5 (1991), no. 1, 157-170. MR 92e:58053
  • 30. Duzaar, F., Grotowski, J.F.: Energy minimizing harmonic maps with an obstacle at the free boundary, Manuscripta Math. 83 (1994), no. 3-4, 291-314. MR 95c:58046
  • 31. Duzaar, F., Grotowski, J.F.: A mixed boundary value problem for energy minimizing harmonic maps, Math. Z. 221 (1996), no. 1, 153-167. MR 1:369 467
  • 32. Duzaar, F., Steffen, K.: A partial regularity theorem for harmonic maps at a free boundary, Asymptotic Anal. 2 (1989), no. 4, 299-343. MR 90m:58041
  • 33. Duzaar, F., Steffen, K.: An optimal estimate for the singular set of a harmonic map in the free boundary, J. Reine Angew. Math. 401 (1989), 157-187. MR 90m:58042
  • 34. Eells, J., Lemaire, L.: A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1-68. MR 82b:58033
  • 35. Eells, J.; Lemaire, L.: Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524. MR 89i:58027
  • 36. Eells, James, Jr.; Sampson, J. H.: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. MR 29:1603
  • 37. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), no.2, 101-113. MR 93m:58026
  • 38. Federer, H.: Geometric measure theory, Springer-Verlag New York Inc., New York, 1969. MR 41:1976
  • 39. Federer, H.: The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767-771. MR 41:5601
  • 40. Feldman, M.: Partial regularity for harmonic maps of evolution into spheres. Comm. Partial Differential Equations 19 (1994), no. 5-6, 761-790. MR 95i:58057
  • 41. Fuchs, M.: $p$-harmonic obstacle problems, I. Partial regularity theory, Ann. Mat. Pura Appl. (4) 156 (1990), 127-158. MR 91m:49044
  • 42. Fuchs, M.: $p$-harmonic obstacle problems, II. Extensions of maps and applications, Manuscripta Math. 63 (1989), no. 4, 381-419. MR 91m:49045
  • 43. Giaquinta, M., Giusti, E.: The singular set of the minima of certain quadratic functionals, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 45-55. MR 86a:49086
  • 44. Giaquinta, M., Modica, G., Sou\v{c}ek, J.: The Dirichlet energy of mappings with values into the sphere. Manuscripta Math. 65 (1989), no. 4, 489-507. MR 90i:49053
  • 45. Giaquinta, M.; Modica, G.; Sou\v{c}ek, J.: Cartesian currents and variational problems for mappings into spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), no. 3, 393-485 (1990). MR 91f:49053
  • 46. Gromov, M., Schoen, R.: Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. no. 76 (1992), 165-246. MR 94e:58032
  • 47. Grotowski, J.F.: Finite time blow-up for the harmonic map heat flow, Calc. Var. Partial Differential Equations 1 (1993), no. 2, 231-236. MR 94k:58034
  • 48. Grüter, M.: Regularity of weak $H$-surfaces. J. Reine Angew. Math. 329 (1981), 1-15. MR 83b:53003
  • 49. Gulliver, R., Jost, J.: Harmonic maps which solve a free-boundary problem, J. Reine Angew. Math. 381 (1987), 61-89. MR 89k:58067
  • 50. Gulliver, R., White, B.: The rate of convergence of a harmonic map at a singular point, Math. Ann. 283 (1989), no. 4, 539-549. MR 90j:58034
  • 51. Hamilton, R.S.: Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, 471, Springer-Verlag, Berlin-New York, 1975. i+168 pp. MR 58:2872
  • 52. Hardt, R., Kinderlehrer, D.: Some regularity results in ferromagnetism, preprint.
  • 53. Hardt, R., Kinderlehrer, D., Lin, F.-H.: Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys. 105 (1986), no. 4, 547-570. MR 88a:35207
  • 54. Hardt, R.; Kinderlehrer, D.; Lin, F.-H.: Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincaré Anal. Non Lineaire 5 (1988), no. 4, 297-322. MR 90c:49039
  • 55. Hardt, R., Kinderlehrer, D., Lin, F.-H.: The variety of configurations of static liquid crystals, Variational methods (Paris, 1988), 115-131, Progr. Nonlinear Differential Equations Appl., 4, Birkhauser Boston, Boston, MA, 1990. MR 94h:58061
  • 56. Hardt, R., Lin, F.H.: A remark on $H^1$ mappings, Manuscripta Math. 56 (1986), no. 1, 1-10. MR 87k:58068
  • 57. Hardt, R., Lin, F.H.: Mappings minimizing the $L^p$ norm of the gradient, Comm. Pure Appl. Math. 40 (1987), no. 5, 555-588. MR 88k:58026
  • 58. Hardt, R., Lin, F.-H.: Stability of singularities of minimizing harmonic maps, J. Differential Geom. 29 (1989), no. 1, 113-123. MR 90a:58037
  • 59. Hardt, R., Lin, F.H.: Partially constrained boundary conditions with energy minimizing mappings, Comm. Pure Appl. Math. 42 (1989), no. 3, 309-334. MR 90b:49060
  • 60. Hardt, R., Lin, F.H.: The singular set of an energy minimizing map from $B\sp 4$ to $S\sp 2$, Manuscripta Math. 69 (1990), no. 3, 275-289. MR 91m:58035
  • 61. Hardt, R., Lin, F.H.: Harmonic maps into round cones and singularities of nematic liquid crystals, Math. Z. 213 (1993), no. 4, 575-593. MR 94h:58062
  • 62. Hardt, R., Lin, F.-H.: Singularities for $p$-energy minimizing unit vectorfields on planar domains, Calc. Var. 3 (1995), 311-341.
  • 63. Hardt, R., Lin, F.-H.: Higher dimensional singularities of $p$-harmonic maps. In preparation.
  • 64. Hardt, R., Lin, F.H., Poon, C.: Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure Appl. Math. 45 (1992), 417-459. MR 93c:58054
  • 65. Hardt, R., Lin, F.-H., Wang, C.Y.: Singularities for $p$-energy minimizing maps, preprint.
  • 66. Hardt, R., Lin, F.-H., Wang, C.Y.: The p-energy minimality of $x/|x|$, preprint.
  • 67. Hélein, F.: Regularité des applications faiblement harmoniques entre une surface et une sphere, C. R. Acad. Sci. Paris Ser. I Math. 311 (1990), no. 9, 519-524. MR 92a:58034
  • 68. Hélein, F.: Regularité des applications faiblement harmoniques entre une surface et une variete Riemannienne, C. R. Acad. Sci. Paris Ser. I Math. 312 (1991), no. 8, 591-596. MR 92e:58055
  • 69. Hildebrandt, S., Kaul, H., Widman, K.-O.: An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), no. 1-2, 1-16. MR 55:6478
  • 70. Jost, J.: Harmonic maps between surfaces. Lecture Notes in Math. 1062, Springer, Berlin-New York, 1984. MR 85j:58046
  • 71. Jost, J.: Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv. 70 (1995), no. 4, 659-673. MR 1:360 608
  • 72. Jost, J., Meier, M.: Boundary regularity for minima of certain quadratic functionals, Math. Ann. 262 (1983), no. 4, 549-561. MR 84i:35051
  • 73. Jost, J., Yau, S.-T.: Harmonic mappings and algebraic varieties over function fields, Amer. J. Math. 115 (1993), no. 6, 1197-1227. MR 95b:32047
  • 74. Kikuchi, N.: An approach to the construction of Morse flows for variational functionals, Nematics (Orsay, 1990), 195-199, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332, Kluwer Acad. Publ., Dordrecht, 1991. MR 93i:58041
  • 75. Korevaar, N.J., Schoen, R,M.: Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), no. 3-4, 561-659. MR 95b:58043
  • 76. Li, M.: Partial regularity of energy minimizing harmonic maps into complete manifolds, Calc. Var. PDE 3 (1995).
  • 77. Liao, G.: A regularity theorem for harmonic maps with small energy, J. Diff. Geom. 22 (1985), 233-241. MR 87f:58043
  • 78. Lin, F.-H.: A remark on the map $x/\vert x\vert $, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), no. 12, 529-531. MR 89b:58056
  • 79. Lin, F.-H.: On nematic liquid crystals with variable degree of orientation, Comm. Pure Appl. Math. 44 (1991), no. 4, 453-468. MR 92g:58024
  • 80. Lin, F.-H.: Static and moving vortices in Ginzburg-Landau theories, Barrett Lecture Series, Univ. Tennessee, March, 1995.
  • 81. Lin, F.H.: Gradient estimate and blowup analysis for stationary harmonic maps, In preparation.
  • 82. Lin, F.-H.: Rectifibility of defect measures and its applications, I. Mapping problems, II. Line vortices of Ginzburg-Landau Equations. In preparation.
  • 83. Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J. 37 (1988), no. 2, 349-367. MR 89m:58043
  • 84. Luckhaus, S.: Convergence of minimizers for the $p$-Dirichlet integral, Math. Z. 213 (1993), no. 3, 449-456. MR 94d:58041
  • 85. Morrey, C.B.: The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49 (1948), 807-851. MR 10:259f
  • 86. Mou, L.H.: Uniqueness of energy minimizing maps for almost all smooth boundary data, Indiana Univ. Math. J. 40 (1991), no. 1, 363-392. MR 92e:58056
  • 87. Mou, L., Yang, P.: Regularity of $n$-harmonic maps, To appear in J. Geom. Anal.
  • 88. Musina, R.: Lower bounds for the $p$-energy and a minimization property of the map $x/\vert x\vert $, Ricerche Mat. 43 (1994), no. 2, 335-346. MR 96a:58071
  • 89. Poon, C.-C.: Some new harmonic maps from $B^3$ to $S^2$, J. Differential Geom. 34 (1991), no. 1, 165-168. MR 92e:58057
  • 90. Preiss, D.: Geometry of measures in $% \textbf { R}^n$: distribution, rectifiability, and densities, Ann. of Math. (2) 125 (1987), no. 3, 537-643. MR 88d:28008
  • 91. Reifenberg, E.R.: Solution of the Plateau Problem for $m$-dimensional surfaces of varying topological type. Acta Math. 104 (1960), 1-92. MR 22:4972
  • 92. Rivière, T.: Harmonic maps from $B^3$ into $S^2$ having a line of singularities, C.R. Acad. Sci. Paris Sér. I, Math. 313 (1991), 583-587. MR 93a:58050
  • 93. Rivière, T.: Everywhere discontinuous harmonic maps into spheres, Acta Math. 175 (1995), no. 2, 197-226. MR 1:368 247
  • 94. Rivière, T.: Line Vortices in the $U(1)$ Higgs model, preprint.
  • 95. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981) 1-24. MR 82f:58035
  • 96. Schoen, R.M.: Analytic aspects of the harmonic map problem. Seminar on nonlinear partial differential equations, 321-358, MSRI Publ., 2, Springer, New York-Berlin, 1984. MR 86b:58032
  • 97. Schoen, R.S., Uhlenbeck, K.: A regularity theory for harmonic maps, J. Diff. Geom. 17 (1982), 307-335; 18 (1983), 329. MR 84b:58037a; MR 84b:58037b
  • 98. Schoen, R.S., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18 (1983), 253-268. MR 85b:58037
  • 99. Schoen, R., Uhlenbeck, K.: Regularity of minimizing harmonic maps into the sphere, Invent. Math. 78 (1984), no. 1, 89-100. MR 86a:58024
  • 100. Serbinowski, T.: Boundary regularity of harmonic maps to nonpositively curved metric spaces. Comm. Anal. Geom. 2 (1994), no. 1, 139-153. MR 95k:58050
  • 101. Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2) 118 (1983), no. 3, 525-571. MR 85b:58121
  • 102. Simon, L.: Isolated singularities of extrema of geometric variational problems. Harmonic mappings and minimal immersions (Montecatini, 1984), 206-277, Lecture Notes in Math., 1161, Springer, Berlin-New York, 1985. MR 87d:58045
  • 103. Simon, Leon: Proof of the basic regularity theorem for harmonic maps. Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), 225-256, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI, 1996. MR 1:369 590
  • 104. Simon, L.: Cylindrical tangent cones and the singular set of minimal submanifolds. J. Differential Geom. 38 (1993), no. 3, 585-652. MR 95a:58026
  • 105. Simon, L.: Uniqueness of some cylindrical tangent cones. Comm. Anal. Geom. 2 (1994), no. 1, 1-33. MR 95m:49026
  • 106. Simon, L.: Rectifiability of the singular set of energy minimizing maps, Calc. of Var. P.D.E. 3 (1995), 1-65.
  • 107. Simon, L.: Theorems on the regularity and singularity of minimal surfaces and harmonic maps. Geometry and global analysis, Tohoku Univ., Sendai, 1993, 111-145. MR 1:361 175
  • 108. Simon, L.: Theorems on regularity and singularity of energy minimizing maps, ETH Lectures in Mathematics Series, Birkhauser, 1996.
  • 109. Simon, L.: On the singularities of harmonic maps, In preparation.
  • 110. Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), no. 4, 558-581. MR 87e:58056
  • 111. Struwe, M.: On the asymptotic behavior of minimizers of the Ginzburg-Landau model in $2$ dimensions, Differential Integral Equations 7 (1994), no. 5-6, 1613-1624. MR 95g:35057a
  • 112. Tolksdorf, P.: Everywhere-regularity for some quasilinear systems with a lack of ellipticity, Ann. Mat. Pura Appl. (4) 134 (1983), 241-266. MR 85h:35104
  • 113. Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), no. 3-4, 219-240. MR 57:14031
  • 114. Wang, C.Y.: Energy minimizing maps to polyhedra, preprint.
  • 115. Wang, C.Y.: Minimality, stability, and perturbation for some p-harmonic maps, preprint.
  • 116. Wang, S.S.: $P$-energy minimizing sections of a fiber bundle. To appear in Mich. Math. J.
  • 117. Wei, S.W.: $P$-harmonic maps and their applications to geometry, topology, and analysis, preprint.
  • 118. Wei, S.W., Yau, C.-M.: Regularity of $p$-energy minimizing maps and $p$-superstrongly unstable indices, J. Geom. Anal. 4 (1994), no. 2, 247-272. MR 95f:58028
  • 119. White, B.: Nonunique tangent maps at isolated singularities of harmonic maps, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 1, 125-129. MR 92e:58058
  • 120. Wolf, M.: Harmonic maps from surfaces to $\mathbf R$-trees, Math. Z. 218 (1995), no. 4, 577-593. MR 1:326 987
  • 121. Zhang, D.: The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), no. 3, 355-365 (1990). MR 91c:58036

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 58E20, 35J45, 35J50

Retrieve articles in all journals with MSC (1991): 58E20, 35J45, 35J50


Additional Information

Robert M. Hardt
Affiliation: Rice University P.O. Box 1892 Houston, TX 77251
Email: hardt@rice.edu

DOI: https://doi.org/10.1090/S0273-0979-97-00692-7
Received by editor(s): May 23, 1996
Additional Notes: Partially supported by the NSF
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society