Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: L. C. G. Rogers and D. Williams
Title: Diffusions, Markov processes, and martingales, Volume One: Foundations, Second Edition
Additional book information: John Wiley & Sons, Chichester, West Sussex, England, 1994, xx + 386 pp., ISBN 0-471-95061-0, $79.95

References [Enhancements On Off] (What's this?)

  • 1. Désiré André, Solution directe du problème résolu par M. Bertrand, C. R. Acad. Sci. Paris 105 (1887), 436-437.
  • 2. Kai Lai Chung, Probabilistic approach in potential theory to the equilibrium problem, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 313–322. MR 0391277
  • 3. Kai Lai Chung, Lectures from Markov processes to Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 249, Springer-Verlag, New York-Berlin, 1982. MR 648601
  • 4. J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121. MR 16:269a
  • 5. J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258
  • 6. Donald A. Dawson, Measure-valued Markov processes, École d’Été de Probabilités de Saint-Flour XXI—1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1–260. MR 1242575, https://doi.org/10.1007/BFb0084190
  • 7. Eugene B. Dynkin, An introduction to branching measure-valued processes, CRM Monograph Series, vol. 6, American Mathematical Society, Providence, RI, 1994. MR 1280712
  • 8. Neil Falkner and P. J. Fitzsimmons, Stopping distributions for right processes, Probab. Theory Related Fields 89 (1991), no. 3, 301–318. MR 1113221, https://doi.org/10.1007/BF01198789
  • 9. Masatoshi Fukushima, Yōichi Ōshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1994. MR 1303354
  • 10. R. K. Getoor, Excessive measures, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1093669
  • 11. R. K. Getoor and M. J. Sharpe, Last exit times and additive functionals, Ann. Probability 1 (1973), 550–569. MR 0353468
  • 12. G. A. Hunt, Markov processes and potentials I, Illinois J. Math. 1 (1957), 44-93. MR 19:951g
  • 13. -, Markov processes and potentials II, Illinois J. Math. 1 (1957), 316-369. MR 19:951g
  • 14. G. A. Hunt, Markoff processes and potentials. III, Illinois J. Math. 2 (1958), 151–213. MR 0107097
  • 15. Shizuo Kakutani, Two dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo 20 (1944), 707-714. MR 7:315b
  • 16. -, Markov processes and the Dirichlet problem, Proc. Japan Acad. 21 (1945), 227-233. MR 11:357h
  • 17. Frank Knight, Note on regularization of Markov processes, Illinois J. Math. 9 (1965), 548–552. MR 0177450
  • 18. Paul Lévy, Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937.
  • 19. Michel Loève, Probability theory, Third edition, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
  • 20. Michel Loève, Paul Lévy, 1886–1971, Ann. Probability 1 (1971), no. 1, 1–18. MR 0342337
  • 21. Zhi Ming Ma and Michael Röckner, Introduction to the theory of (nonsymmetric) Dirichlet forms, Universitext, Springer-Verlag, Berlin, 1992. MR 1214375
  • 22. H. P. McKean Jr., A probabilitstic interpretation of equilibrium charge distributions, J. Math. Kyoto Univ. 4 (1964/1965), 617–625. MR 0185668
  • 23. Daniel Ray, Resolvents, transition functions, and strongly Markovian processes., Ann. of Math. (2) 70 (1959), 43–72. MR 0107302, https://doi.org/10.2307/1969891
  • 24. Tadashi Ueno, On recurrent Markov processes, Kōdai Math. Sem. Rep. 12 (1960), 109–142. MR 0119251

Review Information:

Reviewer: Neil Falkner
Affiliation: Ohio State University
Email: falkner@math.ohio-state.edu
Journal: Bull. Amer. Math. Soc. 34 (1997), 57-62
DOI: https://doi.org/10.1090/S0273-0979-97-00693-9
Review copyright: © Copyright 1997 American Mathematical Society