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This book is an invitation to enter the world of diagram geometry and to play
the following game: investigate incidence geometries starting from some knowledge
of their local 2-dimensional structure.

Incidence geometry can be found almost everywhere in mathematics, since it
is related to the most basic and elementary mathematical structures. The idea
progressively emerged from the work of nineteenth-century geometers like Pasch and
von Staudt, but it is usually credited to Hilbert. In his masterpiece Die Grundlagen
der Geometrie (1899) he set up a system of axioms with different levels concerning
undefined concepts like point, line, plane, lie on, betweenness, congruence, etc.,
pointing out that points, lines, and planes could be replaced by chairs, tables, and
beer mugs, or other objects—their true nature and our mental representation of
them being irrelevant.

The first level consists of connection axioms, e.g., “for each two points there
is one line which lies on these two points”. Other levels concern betweenness,
congruence, parallelism, and continuity. If we call incidence the symmetrization
of the “lie on” relation, the first level of this system of axioms defines a class of
incidence geometries.

Incidence geometry generalizes not only projective and affine geometry but also
the geometries induced on such spaces when some additional structure (e.g., a
quadratic form) is given. It also encapsulates much of the discrete mathematics
developed in this century for purposes ranging from the very practical to the very
theoretical. Let us mention, for example, designs, created to design plant experi-
ments and first studied as a part of applied statistics; coding theory, created for the
detection and correction of errors of data transmission; matroids, having applica-
tions in the study of rigid structures in architecture; and classical finite geometries
as they relate to linear representations needed for the investigation of finite groups.
Such discrete structures are of interest not only for mathematicians, statisticians
and computer scientists but also for physicists and engineers.

Incidence geometry fits into two algebraic frameworks. One of them is linear
algebra, through the notion of division ring or through the use of incidence or
adjacency matrices; the other one is group theory, starting with Klein’s Erlanger
Programm, presenting the study of geometries as that of certain permutation groups
(namely, their automorphism groups). Nevertheless, neither of the two algebraic
languages superseded the geometric viewpoint. Indeed some geometric intuition
enriches both linear algebra and group theory. For example, compare the simplicity
of the “three axioms” defining a projective plane to the “twenty axioms” used to
define a division ring! But above all, geometry contributed to group theory in the
study of Lie-Chevalley groups, Coxeter groups and sporadic simple groups...

This was the beginning of an exceptionally fruitful interplay between geometry
and group theory, often supported by highly synthetic drawings named diagrams.
The investigation of complex simple Lie groups amounts to that of Lie algebras,
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characterized by their root systems, represented in turn by the famous Dynkin
diagrams (1948).
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FIGURE 1

While the classical groups (corresponding to A,, B,, C, and D,) could be
interpreted as the automorphism groups of certain geometries, such a geometrical
interpretation was missing for the exceptional ones (related to Eg, E7, Es, Fy and
G2). Trying to fill this gap, Tits built a bridge between groups and geometries. It
was known that the vertices of the Dynkin diagrams correspond to the conjugacy
classes of maximal parabolic subgroups. Tits then associated a geometry I" to the
Dynkin diagram M of any complex semisimple group G, taking as elements of I'
the maximal parabolic subgroups (partitioned into “types”: the conjugacy classes)
and defining any two such subgroups to be incident if their intersection contains a
maximal connected solvable subgroup. In this way, Klein’s identification “geometry
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< permutation group” was refined to a new identification “incidence geometry «
group together with distinguished classes of subgroups and some incidence rule”.
As a result, the points lost their prominent role as the atoms of the geometry. But
above all, Tits observed the following two critical facts.

First, the neighborhood of any element = of T" (called the residue of x) is the ge-
ometry associated with the diagram of M by deleting the vertex of M corresponding
to the type of x. For example, in a 3-dimensional projective geometry associated
with the Dynkin diagram

O——O0—0

whose three vertices correspond respectively to points, lines, and planes, all residues
of points and all residues of planes are projective planes (O—0), while all residues
of lines are so-called generalized digons (O O), i.e., geometries of rank 2 in which
every element of one type is incident with every element of the other type.

Second, the knowledge of the geometries associated with the Dynkin subdiagrams
of rank 2 (i.e., with two nodes) of M almost suffices to characterize I". This led
Tits to create diagram geometry, “a device to define ‘complicated’ geometries by
means of simpler ones, like building blocks” [5]. Having noticed that the geometries
corresponding to rank 2 subdiagrams of the Dynkin diagrams were simple, well
known, and could be defined over any field, he was able to define new geometries
over any field k¥ and hence new groups. In the meantime, Chevalley published his
elegant construction of algebraic semisimple groups over arbitrary fields, so that
Tits’s “new groups” were not new any more. But the geometric part of his work
remains, where he generalized Dynkin diagrams. He first defined rank 2 geometries
that he called generalized n-gons, because their simplest incarnations are ordinary
n-gons. He showed that the class of Cozeter diagrams, i.e., diagrams made of
strokes symbolizing n-gons, together with additional axioms, represents geometries
from which the main properties of Chevalley groups could be read. But Tits went
on and created buildings, a more appropriate tool for his quest.

Wandering about in the wide world of geometrical structures and looking for
geometries describing sporadic groups, Buekenhout noticed the important role of
some special, trivial rank 2 geometries, which he called circle geometries. Although
the addition of strokes symbolizing circle geometries suffices to associate a diagram
and a geometry to every sporadic simple group, he weakened the axioms of Tits
as far as he could to get a very general notion of diagram geometries, sometimes
called Buekenhout geometries, investigated in the book under review. Let us now
turn to its content.

Incidence geometries are usually defined by their incidence graph, whose vertices
are the elements of the geometry and whose adjacency is the incidence relation.
Since there are several inequivalent definitions, the author chose a simple and effi-
cient one, by induction on the rank. A rank 1 incidence geometry is just a graph
with at least two vertices and no edge. A rank n incidence geometry I' is a con-
nected n-partite graph such that the neighborhood of any vertex is a rank n — 1
geometry whose n — 1 classes are subsets of the n classes of I'. Two elements have
the same type if and only if they are in the same class. A flag is a set of pairwise
incident elements, and its residue is the geometry induced on the intersection of
the neighborhoods of the elements of the flag.

For example, if I' is a rank n projective geometry, then the elements of type
(0 <i <n—1) are the i-dimensional subspaces of I'. Any nest of n — 2 subspaces is
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a flag F' and has a residue of rank 2, which is a projective plane if the dimensions of
the subspaces in F' range from 0 to n — 3 or from 2 to n — 1. However, the residue of
F is a generalized digon (i.e., a complete bipartite graph) in the other cases. The
diagram usually associated with I" is shown in Figure 2, where each node stands for
a class of I'; here, the node with subscript i represents the class of all i-dimensional
subspaces of I'. A single stroke joining two nodes i and j means that any residue
of type {i,j} is a projective plane. The absence of a stroke connecting the nodes i
and j means that any residue of type {i,j} is a generalized digon.

It is remarkable that this diagram characterizes the class of n-dimensional projec-
tive geometries but not I itself. Indeed, we could be more precise in our description
of I' by giving explicitly the orders of all the projective planes, but we could also
be less precise by replacing the strokes denoting the class of projective planes by
strokes denoting a wider class, for example, the class of linear spaces, represented
by Figure 3. (These last are the geometries consisting of points (elements of type 0)
and lines (elements of type 1) such that any two points are incident with precisely
one line and any line contains at least two points.) Then I' admits also Figure 4
as a diagram. But any simple matroid of rank n + 1 admits the same diagram.

A diagram geometry T is an incidence geometry in which, for any pair (i, )
of types, either all or none of the residues consisting of elements of these types
are generalized digons. Then a diagram can be associated with this geometry by
joining any two types ¢ and j by a stroke labelled by any class of rank 2 geometries
containing all residues of I" on ¢ and j, the strokes symbolizing generalized digons
being omitted.

This book helps us to play the game “given a diagram, find all geometries admit-
ting this diagram”. In the first three chapters, a wealth of examples are produced
before and after introducing the basic notions; the elementary theory is developed
in the next three chapters, preparing for Chapter 7, which contains classification
theorems of geometries with prescribed diagrams (e.g., Ly, Cy, Dy, and variations)
and characterizations of matroids, polar spaces, D,, buildings, etc.

Chapters 8 to 12 introduce more sophisticated notions and tools involving auto-
morphism groups, quotients, and universal covers. These are used in the last three
chapters, which go further in the classification game, focusing on Coxeter diagrams
of spherical type and on C),-like diagrams.
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This book invites readers to work with diagram geometries rather than to collect
all results obtained so far. Such a collection, updated in 1992, is available in Chapter
22 (by Buekenhout and Pasini) of the Handbook of incidence geometry [3]. The
book under review does not investigate the “point-line” approach of geometries of
dimension > 3, leaving this topic to Buekenhout and Cohen’s book [4]. It does not
specialize in buildings either, whose theory is fully developed in the books of Tits
[6], Brown [1], and Ronan [5]. However, it is an excellent and truly readable book
for all those who want to get acquainted with diagram geometry or to develop their
skills in working with such geometries.
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