Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: M. M. Lavrentév and L. Ya. Savelév
Title: Linear operators and ill-posed problems
Additional book information: translated from Russian by Nanka Publishers, Moscow, Consultants Bureau, Plenum Publishing Corporation, New York, 1995, xii + 382 pp., ISBN 0-306-11035-0, $110.00

References [Enhancements On Off] (What's this?)

  • 1. N. I. Akheizer and I. M. Glazman, Theory of linear operators in Hilbert space, Volume I and II, Ungar, New York, 1963.
  • 2. J. R. Cannon and U. Hornung, eds., Inverse problems, Internat. Ser. Numer. Math., vol. 77, Birkhäuser-Verlag, Basel, 1986. MR 88c:00010
  • 3. A. Carasso and A. P. Stone, eds., Improperly posed boundary value problems, Res. Notes Math., vol. 1, Pitman, London, 1975. MR 57:10178
  • 4. D. Colton, R. Ewing, and W. Rundell, eds., Inverse problems in partial differential equations, SIAM Proc. Ser., Society for Industrial and Applied Mathematics, Philadelphia, 1990. MR 90j:35001
  • 5. K. Deimling, Nonlinear functional analysis, Springer-Verlag, New York, 1985. MR 86j:47001
  • 6. H. W. Engl and C. W. Groetsch, eds., Inverse and ill-posed problems, Notes Rep. Math. Sci. Engrg., vol. 4, Academic Press, Boston, 1987.MR 90f:00004
  • 7. C. W. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the first kind, Res. Notes Math., vol. 105, Pitman, London, 1984.MR 85k:45020
  • 8. J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Dover, New York, 1952. MR 14:474f
  • 9. F. Jones, Lebesgue integration on Euclidean space, Jones and Bartlett, Boston, 1993. MR 93m:28001
  • 10. G. Klambauer, Real analysis, American Elsevier, New York, 1973.
  • 11. R. J. Knops, ed., Symposium on non-well-posed problems and logarithmic convexity, Lecture Notes Math., vol. 316, Springer-Verlag, New York, 1973. MR 51:6098
  • 12. M. M. Lavrentév, Some improperly posed problems of mathematical physics, Springer Tracts Nat. Philos., vol. II, Springer-Verlag, New York, 1967.
  • 13. M. M. Lavrentév, V. G. Romanov, and S. P. Sisatskij, Problemi non ben posti in Fisica Matematica e Analisi, Consiglio Nazionale delle Ricerche, Publicazioni dell'Istituto di Analisi Globale e Applicazioni, Serie ``Problemi non ben posti ed inverse'', no. 12, Firenze, 1983.
  • 14. L. E. Payne, Improperly posed problems in partial differential equations, Regional Conf. Ser. Appl. Math., vol. 22, Society for Industrial and Applied Mathematics, Philadelphia, 1975. MR 57:3678
  • 15. I. G. Petrovsky, Lectures on partial differential equations, Interscience, New York, 1954. MR 16:478f
  • 16. R. E. Showalter, Hilbert space methods for partial differential equations, Monographs Stud. Math., Pitman, London, 1977. MR 57:16922
  • 17. A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958. MR 20:5411
  • 18. A. N. Tikhonov, editor-in-chief, Ill-posed problems in natural sciences, Proceedings of the International Conference, Ultrecht: VSP-The Netherlands/TSP Science, Moscow, 1992. MR 93m:00041
  • 19. G. M. Wing (with assistance from J. D. Zahrt), A primer on integral equations of the first kind: The problem of deconvolution and unfolding, Society for Industrial and Applied Mathematics, Philadelphia, 1991. MR 93d:45001
  • 20. K. Yosida, Functional analysis, fourth ed., Springer-Verlag, New York, 1974. MR 50:2851

Review Information:

Reviewer: John R. Cannon
Affiliation: University of Central Florida
Email: jcannon@pegasus.cc.ucf.edu
Journal: Bull. Amer. Math. Soc. 34 (1997), 193-196
MSC (1991): Primary 35R30, 35R25, 46E20, 47A50, 28A25
DOI: https://doi.org/10.1090/S0273-0979-97-00709-X
Review copyright: © Copyright 1997 American Mathematical Society
American Mathematical Society