Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Polynomial invariants of finite groups.
A survey of recent developments


Author: Larry Smith
Journal: Bull. Amer. Math. Soc. 34 (1997), 211-250
MSC (1991): Primary 13A50; Secondary 55S10
DOI: https://doi.org/10.1090/S0273-0979-97-00724-6
MathSciNet review: 1433171
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The polynomial invariants of finite groups have been studied for more than a century now and continue to find new applications and generate interesting problems. In this article we will survey some of the recent developments coming primarily from algebraic topology and the rediscovery of old open problems.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams and H. R. Margolis, Modules over the Steenrod Algebra, Topology 10 (1971), 271-282. MR 45:3520
  • [2] J. F. Adams and C. W. Wilkerson, Finite $H$-spaces and algebras over the Steenrod algebra, Ann. of Math. 111 (1980), 95-143; Finite $H$-spaces and algebras over the Steenrod algebra: A correction 113 (1981), 621-622. MR 81h:55006; MR 82i:55010
  • [3] A. Adem and R. J. Milgram, Cohomology of finite groups, Springer-Verlag, Heidelberg, Berlin, New York, 1994. MR 96f:20082
  • [4] G. Almkvist, Some formulas in invariant theory, J. Algebra 77 (1982), 338-359. MR 84i:14030
  • [5] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Menlo Park, CA, 1969. MR 39:4129
  • [6] S. Ba{\l}cerzyk and T. Józefiak, Commutative Noetherian and Krull rings, ARS-Polona, 1989. MR 92f:13001
  • [7] -, Commutative rings: Dimension, multiplicity and homological methods, ARS-Polona, 1989. MR 92b:13001
  • [8] G. Barbançon and M. Raïs, Sur le théorème de Hilbert différentiable pour les groupes linéaires finis, Ann. Sci. École Norm. Sup. (4) 16 (1983), 355-373. MR 86b:58010
  • [9] D. Benson, Polynomial invariants of finite groups, Cambridge Univ. Press, London, 1993. MR 94j:13003
  • [10] M.-J. Bertin, Anneau des invariants du groupe alterné, en caractéristique 2, Bull. Sci. Math. France 94 (1970), 65-72. MR 42:1819
  • [11] -, Anneaux d'invariants d'anneaux de polynômes en caractéristique $p$, C. R. Acad. Sci. Paris Série A 264 (1967), 653-656. MR 35:6661
  • [12] N. Bourbaki, Eléments de mathématiques: Groupes et algèbres de Lie, Masson, Paris, 1981. MR 39:1590
  • [13] D. Bourguiba and S. Zarati, Depth and Steenrod operations, Preprint, Univ. of Tunis II, 1995.
  • [14] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Stud. Adv. Math., vol. 39, Cambridge Univ. Press, Cambridge, 1993. MR 95h:13020
  • [15] S. R. Bullett and I. G. Macdonald, On the Adem relations, Topology 21 (1982), 329-332. MR 83h:55035
  • [16] H. E. A. Campbell, J. C. Harris, and D. L. Wehlau, On rings of invariants of non-modular Abelian groups, Preprint, Queens Univ., 1996.
  • [17] H. E. A. Campbell and I. P. Hughes, $2$-Dimensional invariants of $\operatorname {GL}(2,\mathbb {F}_p)$ and some of its subgroups over the field $\mathbb {F}_p$, Preprint, Queens Univ., 1993.
  • [18] H. E. A. Campbell, I. P. Hughes, and R. D. Pollack, Rings of invariants and $p$-Sylow subgroups, Canad. Math. Bull. 34 (1991), 42-47. MR 92h:13008
  • [19] H. E. A. Campbell, I. P. Hughes, R. J. Shank, and D. L. Wehlau, Bases for rings of coinvariants, Transform. Groups 1 (1996), 307-336. MR 1:424 447
  • [20] H. Cartan, Quotient d'un éspace analytique par un groupe d'automorphismes, Algebraic Geometry and Topology, A Symposium in Honor of S. Lefschetz (eds: R. H. Fox, D. C. Spencer and A. W. Tucker), Princeton Univ. Press, Princeton, 1957. MR 18:823b
  • [21] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, 1956. MR 17:1040e
  • [22] A. Clark and J. Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425-434. MR 51:4221
  • [23] P. M. Cohen, Algebra, second ed., J. Wiley, New York, 1989.
  • [24] D. Cox, J. Little, and D. O'Shea, Ideals, varieties, and algorithms, Springer-Verlag, Heidelberg, Berlin, 1992. MR 93j:13031; MR 1:355 998
  • [25] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-98.
  • [26] -, Binary modular groups and their invariants, Amer. J. Math. 33 (1911), 175-192.
  • [27] -, On finite algebras, Nachr. Akad. Wiss. Göttingen (1905), 358-393.
  • [28] -, Linear groups, Dover, New York, 1958. MR 21:3488
  • [29] -, The collected mathematical papers of Leonard Eugene Dickson, 6 volumes, Chelsea, New York, 1975. MR 56:68a/b/c/d/e; MR 85e:01059
  • [30] W. G. Dwyer and C. W. Wilkerson, Kähler differentials, the $T$-functor, and a theorem of Steinberg, Preprint, the Hopf archives (hopf@math.purdue.edu), 1996.
  • [31] D. Eisenbud, Commutative algebra, Springer-Verlag, Heidelberg, Berlin, 1995. MR 97a:13001
  • [32] D. Engelmann, Optimal, pseudooptimal and perfect homogeneous systems of parameters for rings of invariants, Preprint, Humboldt Univ., 1996.
  • [33] G. Ellingsrud and T. Skjelbred, Profondeur d'anneaux d'invariants en caractéristique $p$, Comp. Math. 41 (1980), 233-244. MR 82c:13015
  • [34] P. Erd\H{o}s, J. Dixmier, and J.-L. Nicolas, Sur le nombre d'invariants fondamentaux des formes binaires, C. R. Acad. Sci. Paris Série I 305 (1987), 319-322. MR 89a:11040
  • [35] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 29:3538
  • [36] M. Feshbach, The image of the trace in the ring of invariants, Preprint, Univ. Minnesota, 1981.
  • [37] -, $p$-Subgroups of compact Lie groups and torsion of infinite height in $H^*(BG;\mathbb {F}_p)$, Mich. Math. J. 29 (1982), 299-306. MR 83m:55026
  • [38] P. Fleischmann, On the ring of vector invariants for the symmetric group, Preprint, Institute for Experimental Mathematics, Essen, 1996.
  • [39] P. Fleischmann and W. Lempken, On generators of modular invariant rings of finite groups, Preprint, Institute for Experimental Mathematics, Essen, 1996.
  • [40] R. M. Fossum and P. A. Griffith, Complete local factorial rings which are not Cohen-Macaulay in characteristic $p$, Ann. Sci. École Norm. Sup. (4) 8 (1975), 189-199. MR 52:3142
  • [41] A. K. Garsia and D. Stanton, Group actions of Stanley-Reisner rings and invariants of permutation groups, Adv. in Math. 51 (1984), 107-201. MR 86f:20003
  • [42] O. E. Glenn, Modular invariant processes, Bull. Amer. Math. Soc. 21 (1914-15), 167-173.
  • [43] M. Göbel, Computing bases for permutation invariant polynomials, J. Symbolic Comput. 19 (1995), 285-291. MR 96f:13006
  • [44] N. L. Gordeev, Coranks of elements of linear groups and the complexity of algebras of invariants, Leningrad Math. J. 2 (1991), 245-267. MR 91h:20063
  • [45] D. Hilbert, Über die Theorie der Algebraischen Formen, Math. Ann. 36 (1890), 473-534.
  • [46] -, Über die vollen Invariantensysteme, Math. Ann. 42 (1893), 313-373.
  • [47] -, Hilbert's invariant theory papers, Lie Groups: History, Frontiers and Applications, Volume VIII (translated by M. Ackerman, commented by R. Hermann), Math. Sci. Press, Brookline, MA, 1978. MR 80e:01035
  • [48] -, Theory of algebraic invariants (translated by Reinhard C. Laudenbacher), Cambridge Univ. Press, Cambridge, 1993. MR 1:266 168
  • [49] H. Hiller, Geometry of Coxeter groups, Pitman, London, 1982. MR 83h:14045
  • [50] H. Hiller and L. Smith, On the realization and classification of cyclic extensions of polynomial algebras over the Steenrod algebra, Proc. Amer. Math. Soc. 100 (1987), 731-738. MR 89c:55017
  • [51] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058. MR 46:1787
  • [52] Shou-Jen Hu and Ming-chang Kang, Efficient generation of rings of invariants, J. Algebra 180 (1996), 341-363. MR 97b:13006
  • [53] V. G. Kac, Root systems, representations of quivers, and invariant theory, Lecture Notes in Math., vol. 996, Springer-Verlag, Heidelberg, Berlin, 1983, pp. 74-108. MR 85j:14088
  • [54] V. G. Kac and D. H. Peterson, Generalized invariants of groups generated by reflections, Geometry Today (Roma, 1984), Progress in Mathematics, vol. 60, Birkhäuser-Verlag, Boston, 1985. MR 88k:14027
  • [55] G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Comput. 21 (1996), 351-366. MR 1:400 337
  • [56] G. Kemper and G. Malle, The finite irreducible linear groups with polynomial ring of invariants, Preprint, Univ. Heidelberg, 1996.
  • [57] N. Killius, Some modular invariant theory of finite groups with particular emphasis on the cyclic group, Diplomarbeit, Univ. Göttingen, 1996.
  • [58] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Math., Vieweg-Verlag, Braunschweig, 1984. MR 86j:14006
  • [59] H. Kraft, P. Slodowy, and T. A. Springer (editors), Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar 13, Birkhäuser-Verlag, Basel, 1989. MR 91m:14074
  • [60] N. J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra I, Amer. J. Math. 116 (1994), 327-360. MR 95c:55022
  • [61] K. Kuhnigk, Transfer in Invariantenringen, Diplomarbeit, Univ. Göttingen (to appear).
  • [62] P. S. Landweber and R. E. Stong, The depth of rings of invariants over finite fields, Proc. New York Number Theory Seminar (1984), Lecture Notes in Math., vol. 1240, Springer-Verlag, New York, 1987. MR 88k:13004
  • [63] J. Lannes, Sur les éspaces fonctionnels dont la source est le classifiant d'un $p$-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 135-224. MR 93j:55019
  • [64] J. Lannes and S. Zarati, Théorie de Smith algébrique et classification des $H^*V\text {--}\,\text {--}\,\mathcal {U}$-injectifs, Bull. Soc. Math. France 123 (1995), 189-223. MR 96c:55003
  • [65] J. Martino and S. Priddy, Stable homotopy classification of $BG_{\hat p}$, Topology 34 (1995), 633-649. MR 96m:55028
  • [66] W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces I, Topology 4 (1965), 47-65. MR 32:6459
  • [67] V. L. Popov, Syzygies in the theory of invariants, Math. USSR-Izv. 47 (1983), 544-622. MR 85g:14013
  • [68] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1995. MR 96h:05207
  • [69] H. Matsumura, Commutative ring theory (translated by M. Reid), Cambridge Univ. Press, Cambridge, 1986. MR 88h:13001
  • [70] H. Miller and C. W. Wilkerson, Vanishing lines for modules over the Steenrod algebra, J. Pure Appl. Algebra 22 (1981), 293-307. MR 82m:55024
  • [71] T. Molien, Über die Invarianten der linearen Substitutionsgruppen, Sitzungsber. König. Preuss. Akad. Wiss. (1897), 1152-1156.
  • [72] H. Nakajima, Invariants of reflection groups in positive characteristics, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 219-221. MR 80i:14019
  • [73] -, Invariants of finite groups generated by pseudoreflections in positive characteristic, Tsukuba J. Math. 3 (1979), 109-122. MR 82i:20058
  • [74] -, Invariants of finite abelian groups generated by transvections, Tokyo J. Math. 3 (1980), 201-214. MR 82e:14058
  • [75] -, On some invariant subrings of polynomial rings in positive characteristics, Proc. 13th Sympos. on Ring Theory (Okayama, 1980), Okayama Univ, Okayama, 1981, pp. 91-107. MR 82h:13012
  • [76] -, Modular representations of $p$-groups with regular rings of invariants, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 469-473. MR 82a:20016
  • [77] -, Modular representations of Abelian groups with regular rings of invariants, Nagoya Math. J. 86 (1982), 229-248. MR 83i:14038
  • [78] -, Relative invariants of finite groups, J. Algebra 79 (1982), 218-234. MR 84c:13006
  • [79] -, Rings of invariants of finite groups which are hypersurfaces, J. Algebra 80 (1983), 279-294. MR 85e:20036
  • [80] -, Regular rings of invariants of unipotent groups, J. Algebra 85 (1983), 253-286. MR 85f:20038
  • [81] -, Rings of invariants of finite groups which are hypersurfaces II, Adv. in Math. 65 (1987), 39-64. MR 89h:14035
  • [82] A. Neeman, The connection between a conjecture of Carlisle and Kropholler, now a theorem of Benson and Crawley-Bovey, and Grothendieck's Riemann-Roch and duality theorems, Comment. Math. Helv. 70 (1995), 339-349. MR 96f:14060
  • [83] F. Neumann, M. D. Neusel, and L. Smith, Rings of generalized and stable invariants of pseudoreflections and pseudoreflection groups, J. Algebra 182 (1996), 85-122. MR 1:388 859
  • [84] -, Rings of generalized invariants and classifying spaces of compact Lie groups, Preprint Nr. 14, Otto-von-Guericke-Universität Magdeburg, 1996.
  • [85] M. D. Neusel, Invariants of some abelian $p$-groups in characteristic $p$, Proc. Amer. Math. Soc. (to appear). MR 1:377 000
  • [86] -, Integral extensions of unstable algebras over the Steenrod algebra, Preprint, Royal Institute of Technology, Stockholm, 1996.
  • [87] -, $\mathcal {P}^*$-Commutative algebra (to appear).
  • [88] M. D. Neusel and L. Smith, The Lasker-Noether theorem for $\mathcal {P}^*$-invariant ideals, Preprint Nr. 26, Otto-von-Guericke-Universität Magdeburg, 1995.
  • [89] E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89-92.
  • [90] -, Der Endlichkeitssatz der Invarianten endlicher linear Gruppen der Characteristik $p$, Nachr. Akad. Wiss. Göttingen (1926), 28-35.
  • [91] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Inst. Hautes Études Sci. Publ. Math. 42 (1972), 47-119. MR 51:10330
  • [92] V. Reiner, On Göbel's bound for invariants of permutation groups, Arch. Math. 65 (1995), 475-480. MR 96h:13013
  • [93] V. Reiner and L. Smith, Systems of parameters for rings of invariants, Preprint, Göttingen, 1996.
  • [94] D. R. Richman, On vector invariants over finite fields, Adv. in Math. 81 (1990), 30-65. MR 91g:15020
  • [95] -, On vector invariants over finite fields, Adv. in Math. (to appear).
  • [96] B. J. Schmid, Finite groups and invariant theory, Séminaire d'Algèbre (P. Dubriel et M.-P. Malliavin, 1989-1990), Lecture Notes in Math., vol. 1478, Springer-Verlag, Heidelberg, Berlin, 1991. MR 94c:13002
  • [97] L. Schwartz, Lectures on Lannes technology, Univ. of Chicago Press, Chicago, 1994.
  • [98] J.-P. Serre, Algèbre locale multiplicités, 3rd ed., Lecture Notes in Math., Springer-Verlag, Heidelberg, Berlin, 1975. MR 34:1352
  • [99] -, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413-420. MR 31:4853
  • [100] -, Représentations linéaires des groupes finis, Hermann, Paris, 1978. MR 80f:20001
  • [101] W. M. Singer, Iterated loop functors and the homology of the Steenrod algebra, J. Pure Appl. Algebra 11 (1977), 83-101. MR 57:17644
  • [102] -, The transfer in homological algebra, Math. Zeit. 202 (1989), 493-523. MR 90i:55035
  • [103] N. J. A. Sloane, Error correcting codes and invariant theory, Amer. Math. Monthly 84 (1977), 82-107. MR 54:12361
  • [104] L. Smith, Realizing certain polynomial algebras as cohomology rings of spaces of finite type fibered over $\times B\mathbf {U}(d)$, Pacific J. Math. 126 (1987), 361-377. MR 88d:55020
  • [105] -, $e$-Invariants and finite covers, II, Trans. Amer. Math. Soc. 347 (1995), 5009-5021. MR 1:316 862
  • [106] -, Polynomial invariants of finite groups, A. K. Peters, Wellesley, MA, 1995. MR 96f:13008
  • [107] -, Noether's bound in the invariant theory of finite groups, Arch. Math. 66 (1966), 89-92. MR 96k:13004
  • [108] -, $\mathcal {P}^*$-Invariant ideals in rings of invariants, Forum Math. 8 (1996), 319-342. MR 97c:13003
  • [109] L. Smith and R. E. Stong, On the invariant theory of finite groups: Orbit polynomials and splitting principles, J. Algebra 110 (1987), 134-157. MR 88k:20077
  • [110] L. Smith and R. M. Switzer, Realizability and nonrealizability of Dickson algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), 303-313. MR 85e:55036
  • [111] R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475-511. MR 81a:20015
  • [112] R. Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392-400. MR 29:4807
  • [113] -, On Dickson's theorem on invariants, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 34 (1987), 699-707. MR 89c:11177
  • [114] B. Sturmfels, Algorithms in invariant theory, Springer-Verlag, Heidelberg, Berlin, Vienna, 1993. MR 94m:13004
  • [115] B. L. van der Waerden, Modern algebra I, II (translated by F. Blum), Ungar, New York, 1949. MR 10:587b
  • [116] H. Weyl, The classical groups, second ed., Princeton Univ. Press, Princeton, 1946. MR 1:42c
  • [117] C. W. Wilkerson, A primer on the Dickson invariants, Proc. Northwestern Homotopy Theory Conference, Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421-434. MR 85c:55017
  • [118] R. M. W. Wood, An introduction to the Steenrod algebra through differential operators, Preprint, Manchester Univ., 1995.
  • [119] Wu Wen-Tsün, Sur les puissances de Steenrod, Colloque de Topologie de Strasbourg, 1951. MR 14:491b

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 13A50, 55S10

Retrieve articles in all journals with MSC (1991): 13A50, 55S10


Additional Information

Larry Smith
Affiliation: AG-Invariantentheorie, Mittelweg 3, D 37133 Friedland, Germany
Email: larry@sunrise.uni-math.gwdg.de, agi@sunrise.uni-math.gwdg.de

DOI: https://doi.org/10.1090/S0273-0979-97-00724-6
Keywords: Polynomial invariants of finite groups
Received by editor(s): January 3, 1997
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society