Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



The Symmetries of Solitons

Author: Richard S. Palais
Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
MSC (1991): Primary 58F07, 35Q51, 35Q53, and, 35Q55
MathSciNet review: 1462745
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we will retrace one of the great mathematical adventures of this century-the discovery of the soliton and the gradual explanation of its remarkable properties in terms of hidden symmetries. We will take an historical approach, starting with a famous numerical experiment carried out by Fermi, Pasta, and Ulam on one of the first electronic computers, and with Zabusky and Kruskal's insightful explanation of the surprising results of that experiment (and of a follow-up experiment of their own) in terms of a new concept they called ``solitons''. Solitons however raised even more questions than they answered. In particular, the evolution equations that govern solitons were found to be Hamiltonian and have infinitely many conserved quantities, pointing to the existence of many non-obvious symmetries. We will cover next the elegant approach to solitons in terms of the Inverse Scattering Transform and Lax Pairs, and finally explain how those ideas led step-by-step to the discovery that Loop Groups, acting by ``Dressing Transformations'', give a conceptually satisfying explanation of the secret soliton symmetries.

References [Enhancements On Off] (What's this?)

  • [AC] Ablowitz, M.J., Clarkson, P.A., Solitons, non-linear evolution equations and inverse scattering, Cambridge Univ. Press, 1991. MR 93g:35108
  • [AKNS1] Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H., Method for solving the Sine-Gordon equation, Phys. Rev. Lett. 30 (1973), 1262-1264. MR 53:9967
  • [AKNS2] Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), 249-315. MR 56:9108
  • [AbM] Abraham, R., Marsden, J.E., Foundations of Mechanics, Benjamin/Cummings, 1978. MR 81e:58025
  • [Ad] Adler, M., On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries equation, Invent. Math 50 (1979), 219-248. MR 80i:58026
  • [AdM] Adler, M., van Moerbeke, P., Completely integrable systems, Euclidean Lie algebras and curves, Adv. Math. 38 (1980), 267-317. MR 83m:58041
  • [Ar] Arnold, V.I., Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978. MR 57:14033
  • [AA] Arnold, V.I., Avez, A., Ergodic Problems of Classical Mechanics, W. A. Benjamin, Inc., New York, 1968. MR 38:1233
  • [Au] Audin, M., Spinning Tops, Cambridge Univ. Press, 1996. MR 97i:58068
  • [BC1] Beals, R., Coifman, R.R., Scattering and inverse scattering for first order systems, Commun. Pure Appl. Math. 37 (1984), 39-90. MR 85f:34020
  • [BC2] Beals, R., Coifman, R.R., Inverse scattering and evolution equations, Commun. Pure Appl. Math. 38 (1985), 29-42. MR 86f:35153
  • [BC3] Beals, R., Coifman, R.R., Linear spectral problems, non-linear equations and the $\bar \partial $-method, Inverse Problems 5 (1989), 87-130. MR 90f:35171
  • [BS] Beals, R., Sattinger. D.H., On the complete integrability of complete integrable systems, Commun. Math. Phys. 138 (1991), 409-436. MR 92m:58051
  • [BDZ] Beals, R., Deift, P., Zhou, X., The inverse scattering transform on the line, in Important Developments in Soliton Theory, Springer, Berlin, 1993, pp. 7-32. MR 95k:34020
  • [Bi] Birkhoff, G.D., Proof of the Ergodic Theorem, Proc. Nat. Acad. Sci. USA 17 (1931), 650-660.
  • [BS] Bona, J.L. and Smith, R., The Initial-Value Problem for the Korteveg-de Vries Equation, Philos. Trans. Royal Soc. London, Series A 278 (1975), 555-601. MR 52:6219
  • [Bu] Budagov, A.S., A completely integrable model of classical field theory with nontrivial particle interaction in two-dimensional space-time. Questions in quantum field theory and statistical physocs, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 77 (1978), 24-56, 229 (in Russian). MR 80e:81053
  • [BuC] Bullough, R.K., Caudrey, P.J., Solitons, Topics in Current Physics, vol. 117, Springer-Verlag, 1980. MR 82m:35001
  • [Da] Darboux, G., Leçons sur la théorie générale des surfaces, Chelsea, 1972. MR 53:81
  • [DaR] Da Rios, Rend. Circ. Mat. Palermo 22 (1906), 117-135.
  • [DJ] Drazin, P.G., Johnson, R.S., Solitons: an introduction, Cambridge Univ. Press, 1989. MR 90j:35166
  • [Dr] Drinfel'd, V.G., Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations, Dokl. Akad. Nauk SSSR 268 (1983), 285-287; Trans. as Sov. Math. Doklady 27 (1983), 68-71. MR 84i:58044
  • [DS] Drinfel'd, V.G., and Sokolov, V.V., Equations of Korteweg-de Vries type and simple Lie algebras, Dokl. Akad. Nauk SSSR 258 (1981), 11-16; Trans. as Soviet Math. Dokl. 23, 457-462. MR 83k:58040
  • [Fe] Fermi, E., Beweis dass ein mechanisches Normalsysteme im Allgemeinen quasi-ergodisch ist, Phys, Zeit. 24 (1923), 261-265.
  • [FT] Faddeev, L.D., Takhtajan, L.A., Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, 1987. MR 89m:58103
  • [FPU] Fermi, E., Pasta, J., Ulam, S., Studies of Nonlinear Problems. I, in Nonlinear Wave Motion, Lectures in Applied Math., vol. 15, Amer. Math. Soc., 1974, pp. 143-155. MR 49:790
  • [FNR1] Flaschka, H., Newell, A.C., Ratiu, T., Kac-Moody Lie algebras and soliton equations, II. Lax equations associated with $A^{(1)}_{1}$, Physica 9D (1983), 303-323. MR 86m:58067
  • [FNR2] Flaschka, H., Newell, A.C., Ratiu, T., Kac-Moody Lie algebras and soliton equations, IV. Lax equations associated with $A^{(1)}_{1}$, Physica 9D (1983), 333-345.
  • [FRS] Frenkel, I.E., Reiman, A.G., Semenov-Tian-Shansky, M.A., Graded Lie algebras and completely integrable dynamical systems, Dokl. Akad. Nauk SSSR 247 (1979), 802-805; Trans. as Soviet Math. Dokl. 20 (1979), 811-814. MR 81c:58042
  • [G] Gardner, C.S., The Korteweg-de Vries Equation as a Hamiltonian system, J. Math. Physics 12 (1971), 1548-1551. MR 44:3615
  • [GGKM] Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M., Method for solving the Korteweg-de Vries equation, Physics Rev. Lett. 19 (1967), 1095-1097.
  • [GDi] Gel'fand, I.M., Dikii, L.A., Fractional Powers of Operators and Hamiltonian Systems, Funkcional'nyi Analiz i ego Prilozhenija 10 (1976). MR 55:6484
  • [GDo] Gel'fand, I.M., Dorfman, I. Ya, Hamiltonian operators and algebraic structures associated with them, Functional Anal. Appl. 13 (1979), 13-30, 96. MR 81c:58035
  • [GL] Gel'fand, I.M., Levitan, B. M., On the determination of a differential equation from its spectral function, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 309-360. MR 13:558f
  • [Ha] Hasimoto, H., Motion of a vortex filament and its relation to elastic, J. Phys. Soc. Japan 31 (1971), 293-295.
  • [HaK] Hasimoto, H., Kodama, Y., Solitons in Optical Communications, Clarendon Press, Oxford, 1995.
  • [Ka1] Kato, T., On the Cauchy Problem for the (Generalized) Korteweg-de Vries Equation, Studies in Applied Math., Adv. in Math. Supp. Stud. 8 (1983), 93-128. MR 86f:35160
  • [Ka2] Kato, T., Quasi-linear equations of evolution, with applications to partial differential equations, Lecture Notes in Math., vol. 448, Springer-Verlag, Berlin and New York, 1975, pp. 25-70. MR 53:11252
  • [KdV] Korteweg, D.J., de Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. Ser. 5 39 (1895), 422-443.
  • [Kos] Kostant, B., The solution to a generalized Toda lattice and representation theory, Adv. Math. 34 (1979), 195-338. MR 82f:58045
  • [KM] Kay, B., Moses, H.E., The determination of the scattering potential from the spectral measure function, III, Nuovo Cim. 3 (1956), 276-304.
  • [KS] Klein, F., Sommerfeld A., Theorie des Kreisels, Teubner, Liepzig, 1897.
  • [L] Lamb, G.L., Jr., Elements of Soliton Theory, John Wiley & Sons, New York, 1980. MR 82f:35165
  • [La1] Lax, P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure. Appl. Math. 21 (1968), 467-490. MR 38:3620
  • [La2] Lax, P.D., Periodic Solutions of the KdV Equations, in Nonlinear Wave Motion, Lectures in Applied Math., vol. 15, Amer. Math. Soc., 1974, pp. 85-96. MR 49:9384
  • [La3] Lax, P.D., Outline of a theory of the KdV equation, in Recent Mathematical Methods in Nonlinear Wave Propogation, Lecture Notes in Math., vol. 1640, Springer-Verlag, Berlin and New York, 1996, pp. 70-102.
  • [LA] Luther, G.G., Alber, M.S., Nonlinear Waves, Nonlinear Optics, and Your Communications Future, in Nonlinear Science Today, Springer-Verlag New York, Inc., 1997.
  • [M] Marchenko,V.A., On the reconstruction of the potential energy from phases of the scattered waves, Dokl. Akad. Nauk SSSR 104 (1955), 695-698.
  • [N] Newell, A.C., Solitons in Mathematics and Physics, SIAM, CBMS-NSF vol. 48, 1985. MR 87h:35314
  • [NMPZ] Novikov, S., Manakov, S., Pitaevskii, L.B., Zakharov, V.E., Theory of Solitons, Plenum, New York, 1984. MR 86k:35142
  • [OU] Oxtoby, J.C., Ulam, S.M., Measure Preserving Homeomorphisms and Metrical Transitivity, Annals of Math. 42 (1941), 874-920. MR 3:211b
  • [PT] Palais, R.S., and Terng, C.L., Critical Point Theory and Submanifold Geometry, Lecture Notes in Math., vol. 1353, Springer-Verlag, Berlin and New York, 1988. MR 90c:53143
  • [Pe] Perelomov, A.M., Integrable Systems of Classical Mechanics and Lie Algebras, Birkhäuser Verlag, Basel, 1990. MR 91g:58127
  • [PrS] Pressley, A. and Segal, G. B., Loop Groups, Oxford Science Publ., Clarendon Press, Oxford, 1986. MR 88i:22049
  • [RS] Reyman, A.G., Semenov-Tian-Shansky, M.A., Current algebras and non-linear partial differential equations, Sov. Math., Dokl. 21 (1980), 630-634.
  • [Ri] Rica, R.L., Rediscovery of the Da Rios Equation, Nature 352 (1991), 561-562.
  • [Ru] Russell, J.S., Report on Waves, 14th Mtg. of the British Assoc. for the Advance. of Science, John Murray, London, pp. 311-390 + 57 plates, 1844.
  • [Sa] Sattinger, D.H., Hamiltonian hierarchies on semi-simple Lie algebras, Stud. Appl. Math. 72 (1985), 65-86. MR 86b:58063
  • [SW] Segal, G., Wilson, G., Loop groups and equations of KdV type, Publ. Math. IHES 61 (1985), 5-65. MR 87b:58039
  • [Se1] Semenov-Tian-Shansky, M.A., Dressing transformations and Poisson group actions, Publ. RIMS Kyoto Univ. 21 (1985), 1237-1260. MR 88b:58057
  • [Se2] Semenov-Tian-Shansky, M.A., Classical r-matrices, Lax equations, Poisson Lie groups, and dressing transformations, Lecture Notes in Physics, Springer-Verlag, vol. 280, 1987, pp. 174-214. MR 89g:58098
  • [Sh] Shabat, A.B., An inverse scattering problem, Diff. Uravneniya 15 (1979), 1824-1834; Trans. in Diff. Equ. 15 (1980), 1299-1307. MR 81m:34026
  • [St] Strang, G., On the Construction and Comparison of Difference Schemes, SIAM J. Numerical Analysis 5 (1968), 506-517. MR 38:4057
  • [Sy] Symes, W.W., Systems of Toda type, Inverse spectral problems, and representation theory, Inventiones Math. 59 (1980), 13-51. MR 81g:58019
  • [Ta] Tappert, F., Numerical Solutions of the Korteweg-de Vries Equations and its Generalizations by the Split-Step Fourier Method, in Nonlinear Wave Motion, Lectures in Applied Math., vol. 15, Amer. Math. Soc., 1974, pp. 215-216. MR 49:790
  • [Te1] Terng, C.L., A higher dimensional generalization of the Sine-Gordon equation and its soliton theory, Ann. Math. 111 (1980), 491-510. MR 82j:58069
  • [Te2] Terng, C.L., Soliton equations and differential geometry, J. Differential Geometry 45 (1997), 407-445. CMP 97:13
  • [TU1] Terng, C.L., Uhlenbeck, K., Poisson Actions and Scattering Theory for Integrable Systems, dg-ga/9707004 (to appear).
  • [TU2] Terng, C.L., Uhlenbeck, K., Bäcklund transformations and loop group actions (to appear).
  • [U1] Uhlenbeck, K., Harmonic maps into Lie group (classical solutions of the chiral model), J. Differential Geometry 30 (1989), 1-50. MR 90g:58028
  • [U2] Uhlenbeck, K., On the connection between harmonic maps and the self-dual Yang-Mills and the Sine-Gordon equations, J. Geom. Phys. 8 (1992), 283-316. MR 93f:58050
  • [Ul] Ulam, S. M., Adventures of a Mathematician, Univ. of Calif. Press, 1991. MR 58:4954
  • [Wa] Wadati, M., The modified Korteweg-de Vries equation, J. Phys. Soc. Japan 34 (1973), 1289-1296. MR 51:7472
  • [Wi] Wilson, G., The modified Lax equations and two dimensional Toda lattice equations associated with simple Lie algebras, Ergodic Theory and Dynamical Systems I 30 (1981), 361-380. MR 84b:58058
  • [ZK] Zabusky, N.J., Kruskal, M.D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Physics Rev. Lett. 15 (1965), 240-243.
  • [ZF] Zakharov, V.E., Faddeev, L.D., Korteweg-de Vries equation is a fully integrable Hamiltonian system, Funktsional Anal. i Prilozhen 5 (1971), 18-27. MR 46:2270
  • [ZMa1] Zakharov, V.E., Manakov, S.V., On resonant interaction of wave packets in non-linear media, JETP Letters 18 (1973), 243-247.
  • [ZMa2] Zakharov, V.E., Manakov, S.V., The theory of resonance interaction of wave packets in non-linear media, Sov. Phys. JETP 42 (1975), 842-850. MR 54:14617
  • [ZMi1] Zakharov, V.E., Mikhailov, A.V., Example of nontrivial interaction of solitons in two-dimensional classical field theory, JETP Letters 27 (1978), 42-46.
  • [ZMi2] Zakharov, V.E., Mikhailov, A.V., Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method, Soviet Physics JETP 47 (1978), 1017-1027. MR 80c:81115
  • [ZS] Zakharov, V.E., Shabat, A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62-69. MR 53:9966

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 58F07, 35Q51, 35Q53, and, 35Q55

Retrieve articles in all journals with MSC (1991): 58F07, 35Q51, 35Q53, and, 35Q55

Additional Information

Richard S. Palais
Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254
Address at time of publication: The Institute for Advanced Study, Princeton, New Jersey 08540

Keywords: Solitons, integrable systems, hidden symmetry, Korteweg-de Vries equation, Nonlinear Schr\"{o}dinger equation, Lax pair, Inverse Scattering Transform, loop group
Received by editor(s): May 7, 1997
Received by editor(s) in revised form: August 6, 1997
Additional Notes: During the preparation of this paper, the author was supported in part by the Mathematics Institute and Sonderforschungsbereich 256 of Bonn University.
Article copyright: © Copyright 1997 Richard S. Palais

American Mathematical Society