Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Michael Aschbacher
Title: 3-Transposition groups
Additional book information: Cambridge University Press, 1997, 260+vii pp., ISBN 0-521-57196-0, $49.94

References [Enhancements On Off] (What's this?)

  • 1. M. Aschbacher, Finite groups generated by odd transpositions I, Math. Z. 127 (1972), 45-56. MR 46:9161
  • 2. M. Aschbacher, On finite groups of component type, Ill. J. Math 19 (1975), 87-115. MR 51:13018
  • 3. M. Aschbacher, On finite groups in which the generalized Fitting group of the centralizer of some involution is extra-special, Ill. J. Math. 21 (1977), 347-364. MR 56:477
  • 4. M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1986. MR 89b:20001
  • 5. M. Aschbacher, Sporadic Groups, Cambridge University Press, Cambridge, 1994. MR 96e:20020
  • 6. R. Brauer, On the structure of groups of finite order, Proc. Int. Cong. Math. 1954, vol. 1, 1-9, reprinted in Richard Brauer: Collected Papers, vol. 2, eds. P. Fong, W.J. Wong, MIT Press, 1980, 69-77. MR 20:1709
  • 7. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, An Atlas of Finite Groups, Oxford Univ. Press, Oxford, 1985. MR 88g:20025
  • 8. H. Cuypers and J.I. Hall, The $3$-transposition groups with trivial center, J. Algebra 178 (1995), 149-193. MR 96k:20056
  • 9. B. Fischer, Distributive Quasigruppen endlicher Ordnung, Math. Zeit. 83 (1964), 267-303. MR 28:4055
  • 10. B. Fischer, A characterization of the symmetric groups on $4$ and $5$ letters, J. Algebra 3 (1966), 88-98. MR 33:2708
  • 11. B. Fischer, Finite groups generated by $3$-transpositions, Invent. Math. 13 (1971), 232-246. MR 45:3557
  • 12. D. Gorenstein, Finite Simple Groups: An Introduction to their Classification, Plenum Press, New York, 1982. MR 84j:20002
  • 13. G. Glauberman, On loops of odd order, I, J. Algebra 1 (1964), 374-396, II, J. Algebra 8 (1968), 393-414. MR 31:267
  • 14. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420. MR 34:2681
  • 15. M. Suzuki, On characterizations of linear groups II, Trans. Amer. Math. Soc. 92 (1959), 205-219. MR 21:7252
  • 16. F. Timmesfeld, Finite simple groups in which the generalized Fitting group of the centralizer of some involution is extra-special, Ann. of Math. 107 (1978), 297-369. MR 81i:20016a
  • 17. F. Timmesfeld, Groups generated by $k$-root subgroups, Invent. Math.106 (1991), 575-666. MR 92j:20026
  • 18. M.-M. Virotte-Ducharme, Couple fischériens presque simple, Thèse, Université Paris 7, 1985.
  • 19. G.E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc. 3 (1963), 1-62. MR 27:212
  • 20. R. Weiss, A uniqueness lemma for groups generated by $3$-transpositions, Math. Proc. Camb. Phil. Soc. 97 (1985), 421-431. MR 86h:20036
  • 21. F. Zara, Classification des couples fischeriens, Thèse Université de Picardie, 1984.

Review Information:

Reviewer: Jonathan I. Hall
Affiliation: Michigan State University
Email: jhall@math.msu.edu
Journal: Bull. Amer. Math. Soc. 35 (1998), 161-169
MSC (1991): Primary 20D08; Secondary 20D05, 20E32
DOI: https://doi.org/10.1090/S0273-0979-98-00741-1
Keywords: Sporadic groups, finite simple groups, $3$-transposition groups
Review copyright: © Copyright 1998 American Mathematical Society
American Mathematical Society