Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Modular representations of simple Lie algebras


Author: J. E. Humphreys
Journal: Bull. Amer. Math. Soc. 35 (1998), 105-122
MSC (1991): Primary 17B20, \; Secondary 20G05
DOI: https://doi.org/10.1090/S0273-0979-98-00749-6
Erratum: Bull. Amer. Math. Soc. 35 (1998), no. 3, 231 - 231.
MathSciNet review: 1605399
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In spite of many efforts over the past 50 years, the irreducible representations of the Lie algebra of a simple algebraic group over a field of prime characteristic are poorly understood. Recent work on quantum groups at a root of unity has provided new impetus for the subject. This article surveys what has been done and what remains to be done.


References [Enhancements On Off] (What's this?)

  • 1. H.H. Andersen, The irreducible characters for semi-simple algebraic groups and for quantum groups, pp. 732-743, Proc. Intern. Congress Math. (Zürich, 1994), Birkhäuser, Basel, 1995. MR 97m:20051
  • 2. H.H. Andersen, J.C. Jantzen, and W. Soergel, Representations of quantum groups at a $p$-th root of unity and of semisimple groups in characteristic $p$: independence of $p$, Astérisque 220 (1994). MR 95j:20036
  • 3. G.M. Benkart and J.M. Osborn, Representations of rank one Lie algebras of characteristic $p$, pp. 1-37, Lie Algebras and Related Topics, Lecture Notes in Math., vol. 933, Springer-Verlag, Berlin, 1982. MR 84c:17004
  • 4. A.J. Berkson, The $u$-algebra of a restricted Lie algebra is Frobenius, Proc. Amer. Math. Soc. 15 (1964), 14-15. MR 28:2132
  • 5. V. Chari and A. Pressley, Representations of modular Lie algebras through quantum groups, C.R. Acad. Sci. Paris 317 (1993), 723-728. MR 94j:17020
  • 6. C.W. Curtis, Noncommutative extensions of Hilbert rings, Proc. Amer. Math. Soc. 4 (1953), 945-955. MR 15:498g
  • 7. -, Representations of Lie algebras of classical type with applications to linear groups, J. Math. Mech. 9 (1960), 307-326. MR 22:1634
  • 8. C. DeConcini and V.G. Kac, Representations of quantum groups at roots of $1$, pp. 471-506, Operator algebras, unitary representations, enveloping algebras, and invariant theory, Progr. Math., vol. 92, Birkhäuser, Boston, 1990. MR 92g:17012
  • 9. C. DeConcini, V.G. Kac, and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), 151-189. MR 93f:17020
  • 10. -, Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157 (1993), 405-427. MR 94i:17019
  • 11. -, Some quantum analogues of solvable Lie groups, pp. 41-65, Geometry and analysis (Bombay, 1992), Tata Inst. Fund. Res., Bombay, 1995. MR 96h:17015
  • 12. R. Farnsteiner, Periodicity and representation type of modular Lie algebras, J. Reine Angew. Math. 464 (1995), 47-65. MR 97a:17019
  • 13. J. Feldvoss, Homological topics in the representation theory of restricted Lie algebras, pp. 69-119, Lie algebras and their representations (Seoul, 1995), Contemp. Math., 194, Amer. Math. Soc., Providence, RI, 1996. MR 97e:17026
  • 14. E.M. Friedlander and B.J. Parshall, Support varieties for restricted Lie algebras, Invent. Math. 86 (1986), 553-562. MR 88f:17018
  • 15. -, Geometry of $p$-unipotent Lie algebras, J. Algebra 109 (1987), 25-45. MR 89a:17017
  • 16. -, Rational actions associated to the adjoint representation, Ann. Sci. École Norm. Sup. (4) 20 (1987), 215-226. MR 88k:14026
  • 17. -, Modular representation theory of Lie algebras, Amer. J. Math. 110 (1988), 1055-1094. MR 89j:17015
  • 18. -, Deformations of Lie algebra representations, Amer. J. Math. 112 (1990), 375-395. MR 91e:17012
  • 19. -, Induction, deformation, and specialization of Lie algebra representations, Math. Ann. 290 (1991), 473-489. MR 92h:17021
  • 20. V. Ginzburg and S. Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), 179-198. MR 94c:17026
  • 21. G. Hiss, Die adjungierten Darstellungen der Chevalley-Gruppen, Arch. Math. 42 (1984), 408-416. MR 85k:20134
  • 22. G. Hochschild, Cohomology of restricted Lie algebras, Amer. J. Math. 76 (1954), 555-580. MR 16:019a
  • 23. G.M.D. Hogeweij, Almost classical Lie algebras, Indag. Math. 44 (1982), I, 441-452; II, 453-460. MR 84f:17007
  • 24. J.E. Humphreys, Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19 (1971), 51-79. MR 44:271
  • 25. -, Induced modules for semisimple groups and Lie algebras, pp. 341-349, Lie Algebras and Related Topics (Conf. Proc. of Canad. Math. Soc., vol. 5), Amer. Math. Soc., Providence, RI, 1986. CMP 18:10
  • 26. -, Conjugacy Classes in Semisimple Algebraic Groups, Math. Surveys Monographs, vol. 43, Amer. Math. Soc., Providence, RI, 1995. MR 97i:20057
  • 27. -, Comparing modular representations of semisimple groups and their Lie algebras, pp. 69-80, Modular Interfaces: Modular Lie Algebras, Quantum Groups, and Lie Superalgebras, International Press, Cambridge, MA, 1997. CMP 98:05
  • 28. N. Jacobson, Restricted Lie algebras of characteristic $p$, Trans. Amer. Math. Soc. 50 (1941), 15-25. MR 3:103g
  • 29. -, Lie Algebras, Wiley Interscience, New York, 1962; Dover reprint, 1979. MR 80k:17001
  • 30. J.C. Jantzen, Kohomologie von $p$-Lie-Algebren und nilpotente Elemente, Abh. Math. Sem. Univ. Hamburg 56 (1986), 191-219. MR 88e:17019
  • 31. -, Restricted Lie algebra cohomology, pp. 91-108, Algebraic Groups (Utrecht, 1986), Lecture Notes in Math., vol. 1271, Springer-Verlag, Berlin, 1987. MR 89h:17023
  • 32. -, Support varieties of Weyl modules, Bull. London Math. Soc. 19 (1987), 238-244. MR 88e:17008
  • 33. -, Representations of Algebraic Groups, Academic Press, Boston, 1987. MR 89c:20001
  • 34. -, Lectures on Quantum Groups, Grad. Studies in Math., vol. 6, Amer. Math. Soc., Providence, RI, 1996. MR 96m:17029
  • 35. -, Subregular nilpotent representations of $\mathfrak{s}\mathfrak{l}_n$ and $\mathfrak{s}\mathfrak{o}_{2n+1}$, Math. Proc. Cambridge Philos. Soc. (to appear).
  • 36. -, Representations of $\mathfrak{s}\mathfrak{o}_5$ in prime characteristic, Aarhus Univ. Preprint Series, No. 13, 1997.
  • 37. -, Representations of Lie algebras in prime characteristic, Proc. NATO Advanced Study Institute, Representation Theories and Algebraic Geometry, Montreal, 1997 (to appear).
  • 38. V.G. Kac, Irreducible representations of Lie algebras of classical type [Russian], Uspekhi Mat. Nauk 27 (1972), no. 5, 237-238. MR 53:565
  • 39. V. Kac and B. Weisfeiler, Coadjoint action of a semi-simple algebraic group and the center of the enveloping algebra in characteristic $p$, Indag. Math. 38 (1976), 136-151. MR 54:5364
  • 40. D. Kazhdan and M. Verbitsky, Cohomology of restricted quantized universal enveloping algebras, pp. 107-115, Quantum Deformations of Algebras and Their Representations, Israel Math. Conf. Proc., vol. 7, Bar-Ilan University, 1993. MR 95b:17026
  • 41. Ya. S. Krylyuk, The Zassenhaus variety of a classical semisimple Lie algebra in finite characteristic, Mat. Sb. (N.S.) 130 (1986), 475-487; English transl., Math. USSR-Sb. 58 (1987), 477-490. MR 88a:17023
  • 42. S. Kumar, Representations of quantum groups at roots of unity, pp. 187-224, Quantum Topology, ed. D.N. Yetter, World Scientific, Singapore, 1994. MR 95m:17006
  • 43. Z. Lin, Extensions between simple modules for Frobenius kernels, Math. Z. 207 (1991), 485-499. MR 92g:20066
  • 44. -, Loewy series of certain indecomposable modules for Frobenius subgroups, Trans. Amer. Math. Soc. 332 (1992), 391-409. MR 92j:20040
  • 45. Z. Lin and D. Nakano, Algebraic group actions in the cohomology theory of Lie algebras of Cartan type, J. Algebra 179 (1996), 852-888. MR 96k:17011
  • 46. G. Lusztig, Hecke algebras and Jantzen's generic decomposition patterns, Adv. Math. 37 (1980), 121-164. MR 82b:20059
  • 47. -, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), 89-114. MR 91j:17018
  • 48. -, Finite dimensional Hopf algebras arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 257-296. MR 91e:17009
  • 49. -, Periodic $W$-graphs, Represent. Theory 1 (1997), 207-279. CMP 97:16
  • 50. A.A. Mil'ner, Irreducible representations of modular Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1240-1259; English transl., Math. USSR-Izv. 9 (1975), 1169-1187. MR 57:9774
  • 51. -, Maximal degree of irreducible Lie algebra representations over a field of positive characteristic, Funktsional. Anal. i Prilozen. 14, no. 2, 67-68; English transl., Functional Anal. Appl. 14 (1980), 136-137. MR 81h:17012
  • 52. I. Mirkovi\'{c} and D. Rumynin, Geometric representation theory of restricted Lie algebras of classical type, in preparation.
  • 53. D.K. Nakano, Complexity and support varieties for finite dimensional algebras, pp. 201-218, Lie algebras and their representations (Seoul, 1995), Contemp. Math., 194, Amer. Math. Soc., Providence, RI, 1996. MR 97c:17031
  • 54. D.K. Nakano and R.D. Pollack, On the construction of indecomposable modules over restricted enveloping algebras, J. Pure Appl. Algebra 107 (1996), 61-73. MR 97e:17028
  • 55. G.M. Nielsen, A determination of the minimal right ideals in the enveloping algebra of a Lie algebra of classical type, Ph.D. thesis, U. Wisconsin, 1963.
  • 56. A.N. Panov, Irreducible representations of the Lie algebra $sl(n)$ over a field of positive characteristic, Mat. Sb. (N.S.) 128 (1985), 21-34; English transl., Math. USSR-Sb. 56 (1987), 19-32. MR 87h:17010
  • 57. -, Irreducible representations of maximal dimension of a simple Lie algebra over a field of positive characteristic, Funktsional. Anal. i Prilozen. 23 (1989), no. 3, 80-81; English transl., Functional Anal. Appl. 23 (1989), 240-241. MR 90k:17038
  • 58. K.M. Peters, Characters of modular torsion free representations of classical Lie algebras, Comm. Algebra 22 (1994), 4807-4826. MR 95h:17010
  • 59. K.M. Peters and Z. Shi, A construction of modular representations of classical Lie algebras, Proc. Amer. Math. Soc. 122 (1994), 399-407. MR 95a:17010
  • 60. R.D. Pollack, Restricted Lie algebras of bounded type, Bull. Amer. Math. Soc. 74 (1968), 326-331. MR 36:2661
  • 61. A.A. Premet, The Green ring of a simple three-dimensional Lie $p$-algebra [Russian], Soviet Math. (Iz. VUZ) 35 (1991), no. 10, 61-67. MR 93i:17007
  • 62. -, An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristic, Trans. Amer. Math. Soc. 347 (1995), 2961-2988. MR 95k:17012
  • 63. -, Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture, Invent. Math. 121 (1995), 79-117. MR 96g:17007
  • 64. -, Support varieties of non-restricted modules over Lie algebras of reductive groups, J. London Math. Soc. 55 (1997), 236-250; Corrigenda and addenda, J. London Math. Soc. (to appear). MR 98a:17026
  • 65. -, Complexity of Lie algebra representations and nilpotent elements of the stabilizers of linear forms, Math. Z. (to appear).
  • 66. A. Premet and S. Skryabin, Representations of restricted Lie algebras and equivariant families of associative algebras (to appear).
  • 67. D. Quillen, On the endomorphism ring of a simple module over an enveloping algebra, Proc. Amer. Math. Soc. 21 (1969), 171-172. MR 39:252
  • 68. A.N. Rudakov, On representations of classical semisimple Lie algebras of characteristic $p$, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 735-743; English transl., Math. USSR-Izv. 4 (1970), 741-749. MR 42:1872
  • 69. -, Weights of modular representations, Mat. Zametki 11 (1972), 397-402; English transl., Math. Notes 11 (1972), 244-247. MR 46:3583
  • 70. -, Dimensions of certain irreducible representations of semi-simple Lie algebras of classical type over fields of finite characteristic [Russian], Trudy Sem. Petrovsk., No. 3 (1978), 147-160. MR 58:11046
  • 71. -, Local universal algebras and reduced representations of Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 178-183; English transl., Math. USSR-Izv. 14 (1980), 169-174. MR 80d:17007
  • 72. -, Reducible $p$-representations of a simple three-dimensional Lie $p$-algebra [Russian], Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1982, no. 6, 45-49. MR 84g:17016
  • 73. A.N. Rudakov and I.R. Shafarevich, Irreducible representations of a simple three-dimensional Lie algebra over a field of finite characteristic, Mat. Zametki 2 (1967), 439-454; English transl., Math. Notes 2 (1967), 760-767. MR 36:2662
  • 74. J.R. Schue, Symmetry for the enveloping algebra of a restricted Lie algebra, Proc. Amer. Math. Soc. 16 (1965), 1123-1124. MR 32:2515
  • 75. G.B. Seligman, Modular Lie Algebras, Springer-Verlag, Berlin, 1967. MR 39:6933
  • 76. R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56. MR 27:5870
  • 77. H. Strade and R. Farnsteiner, Modular Lie Algebras and their Representations, Marcel Dekker, New York, 1988. MR 89h:17021
  • 78. F.D. Veldkamp, The center of the universal enveloping algebra of a Lie algebra in characteristic $p$, Ann. Sci. École Norm. Sup. (4) 5 (1972), 217-240. MR 46:7341
  • 79. D.-N. Verma, The rôle of affine Weyl groups in the representation theory of algebraic Chevalley groups and their Lie algebras, pp. 653-705, Lie Groups and Their Representations (Budapest, 1971), Halsted, New York, 1975. MR 53:13425
  • 80. B.Yu. Weisfeiler and V.G. Kac, Irreducible representations of Lie $p$-algebras, Funktsional. Anal. i Prilozen. 5 (1971), no. 2, 28-36; English transl., Functional Anal. Appl. 5 (1971), 111-117. MR 44:2793
  • 81. H. Zassenhaus, The representations of Lie algebras of prime characteristic, Proc. Glasgow Math. Assoc. 2 (1954), 1-36. MR 16:108c

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 17B20, \, 20G05

Retrieve articles in all journals with MSC (1991): 17B20, \, 20G05


Additional Information

J. E. Humphreys
Affiliation: Dept. of Mathematics & Statistics, U. Massachusetts, Amherst, MA 01003-4515
Email: jeh@math.umass.edu

DOI: https://doi.org/10.1090/S0273-0979-98-00749-6
Keywords: Simple Lie algebra, modular representations
Received by editor(s): June 27, 1996
Received by editor(s) in revised form: February 24, 1998
Additional Notes: In preparing this survey I have benefited from extensive correspondence and conversations with Jens Carsten Jantzen, as well as advice from Ivan Mirković and Dmitriy Rumynin.
Dedicated: To the memory of Boris Weisfeiler
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society