Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Geometry of Riemann surfaces based on
closed geodesics


Author: Paul Schmutz Schaller
Journal: Bull. Amer. Math. Soc. 35 (1998), 193-214
MSC (1991): Primary 30F45, 53C22, 57M50, 11F06, 11H99; Secondary 32G15, 11F72
DOI: https://doi.org/10.1090/S0273-0979-98-00750-2
MathSciNet review: 1609636
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper presents a survey on recent results on the geometry of Riemann surfaces showing that the study of closed geodesics provides a link between different aspects of Riemann surface theory such as hyperbolic geometry, topology, spectral theory, and the theory of arithmetic Fuchsian groups. Of particular interest are the systoles, the shortest closed geodesics of a surface; their study leads to the hyperbolic geometry of numbers with close analogues to classical sphere packing problems.


References [Enhancements On Off] (What's this?)

  • 1. W. Abikoff. The real analytic theory of Teichmüller space. Springer LNM 820 (1980). MR 82a:32028
  • 2. C. Adams. Maximal cusps, collars and systoles in hyperbolic surfaces. To appear in Indiana Univ. Math. J.
  • 3. L.V. Ahlfors. Conformal invariants. Mc Graw-Hill (1973). MR 50:10211
  • 4. A. Ash. On eutactic forms. Can. J. Math. 29 (1977), 1040-1054. MR 58:10762
  • 5. A. Ash. On the existence of eutactic forms. Bull. London Math. Soc. 12 (1980), 192-196. MR 83a:10034
  • 6. C. Bavard. Systole et invariant d'Hermite. J. reine angew. Math. 482 (1997), 93-120. MR 98a:11085
  • 7. A.M. Bergé; J. Martinet. Sur la classification des réseaux eutactiques. J. London Math. Soc. 53 (1996), 417-432. MR 97i:11076
  • 8. J.S. Birman; C. Series. Geodesics with bounded intersection number on surfaces are sparsely distributed. Topology 24 (1985), 217-225. MR 87f:57012
  • 9. B. Bollobás. Extremal graph theory. Academic Press (1978). MR 80a:05120
  • 10. F. Bonahon. The geometry of Teichmüller spaces via geodesic currents. Inv. math. 92 (1988),139-162. MR 90a:32025
  • 11. F. Bonahon. Shearing hyperbolic surfaces, bended pleated surfaces and Thurston's symplectic form. Ann. Fac. Sci. Toulouse (1996), 233-297. MR 97i:57011
  • 12. A. Borel. Commensurability classes and volumes of hyperbolic 3-manifolds. Ann. Scuola Norm. Sup. Pisa (Ser. IV) 8 (1981), 1-33. MR 82j:22008
  • 13. B.H. Bowditch. A proof of McShane's identity via Markoff triples. Bull. London Math. Soc. 28 (1996), 73-78. MR 96i:58137
  • 14. K.S. Brown. Cohomology of groups. Springer (1982). MR 96a:20072
  • 15. P. Buser. Riemannsche Flächen mit Eigenwerten in $(0,1/4)$. Comment. Math. Helv. 52 (1977), 25-34. MR 55:7924
  • 16. P. Buser. Geometry and spectra of compact Riemann surfaces. Birkhäuser (1992). MR 93g:58149
  • 17. R.D. Canary; D.B.A. Epstein; P. Green. Notes on notes of Thurston. In Analytical and geometrical aspects of hyperbolic space. D.B.A. Epstein ed. Cambridge Univ. Press (1987), 3-92. MR 89e:57008
  • 18. J.W.S. Cassels. An introduction to the geometry of numbers. Second ed. Springer (1971). MR 46:5257
  • 19. A.J. Casson; S.A. Bleiler. Automorphisms of surfaces after Nielsen and Thurston. Cambridge University Press (1988). MR 89k:57025
  • 20. J.H.H. Chalk. Algebraic lattices. In Convexity and its applications. P.Mp. Gruber; J.M. Wills eds. Birkhäuser (1983), 97-110. MR 85c:11054
  • 21. I. Chavel. Eigenvalues in Riemannian geometry. Academic Press (1984). MR 86g:58140
  • 22. H. Cohn. Approach to Markoff's minimal forms through modular functions. Annals Math. 61 (1955), 1-12. MR 16:801e
  • 23. J.H. Conway; N.J.A.Sloane. Lattices with few distances. J. Number theory 39 (1991), 75-90.
  • 24. J.H. Conway; N.J.A.Sloane. Sphere packing, lattices and groups. Second ed. Springer (1993). MR 93h:11069
  • 25. T. Cusick; M. Flahive. The Markoff and Lagrange Spectra. Math. Surveys, vol. 30, AMS (1989). MR 90i:11069
  • 26. M. Dehn. Papers on group theory and topology. J. Stillwell ed. Springer (1987). MR 88d:01041
  • 27. J. Delsarte. Sur le gitter fuchsien. C.R. Acad. Sci. Paris Sér. I Math. 214 (1942), 147-149. MR 4:191
  • 28. J. Dodziuk; T. Pignataro; B. Randol; D. Sullivan. Estimating small eigenvalues of Riemann surfaces. In The legacy of Sonya Kovalevskaya. Contemp. Math 64, AMS (1987), 93-121. MR 88h:58119
  • 29. P. Erdös; P.M. Gruber; J. Hammer. Lattice points. Longman Scientific & Technical Essex (1989). MR 90g:11081
  • 30. H.M. Farkas; I. Kra. Riemann surfaces. 2nd ed. Springer (1992). MR 93a:30047
  • 31. A. Fathi; F. Laudenbach; V. Poénaru. Travaux de Thurston sur les surfaces. Séminaire Orsay, Astérisque 66-67 (1979).
  • 32. L. Fejes Tóth. Kreisausfüllungen der hyperbolischen Ebene. Acta Math. Acad. Sci. Hungar 4 (1953), 103-110.
  • 33. W. Fenchel; J. Nielsen. Discontinuous groups of non-euclidean motions. Unpublished manuscript (1948).
  • 34. R. Fricke; F. Klein. Vorlesungen über die Theorie der elliptischen Modulfunktionen. Band 1,2. Teubner Leipzig (1890,1892).
  • 35. F. Fricker. Lehrbuch der Gitterpunktlehre. Birkhäuser (1982).
  • 36. D. Ginzburg; Z. Rudnick. Stable multiplicities in the length spectrum of Riemann surfaces. To appear in Israel J. Math.
  • 37. D.D. Gorskov. Geometry of Lobachevski in connection with certain questions in arithmetic. J. Soviet Math. 16 (1981), 780-820.
  • 38. P.M. Gruber; C.G. Lekkerkerker. The geometry of numbers. Second ed. North-Holland (1987). MR 88j:11034
  • 39. L. Guillopé. Sur la distribution des longueurs des géodésiques fermées d'une surface compacte à bord totalement géodésique. Duke Math. J. 53 (1986), 827-848. MR 88e:11042
  • 40. J.L. Harer. The cohomology of moduli space of curves. In Theory of moduli. Sernesi ed. Springer LNM 1337 (1988), 138-221.MR 90a:32026
  • 41. J.L. Harer; D. Zagier. The Euler characteristic of the moduli space of curves. Invent. math. 85 (1986), 457-485. MR 87i:32031
  • 42. H.M. Hilden; M.T. Lozano; J.M. Montesinos-Amilibia. A characterization of arithmetic subgroups of $SL(2,\text{\emph{\sf R}})$ and $SL(2,\text{\emph{\sf C}})$. Math. Nachr. 159 (1992), 245-270. MR 94i:20088
  • 43. E. Hlawka. $90$ Jahre Geometrie der Zahlen. Jahresbuch Ueberblick Mathematik (1980), 9-41. MR 83a:10051
  • 44. H. Huber. Ueber eine neue Klasse automorpher Formen und ein Gitterproblem in der hyperbolischen Ebene I. Comment. Math. Helv. 30 (1955), 20-62.
  • 45. H. Huber. Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. I, Math. Ann. 138 (1959), 1-26; II, Math. Ann. 142 (1961), 385-398. MR 22:99; MR 23:A3845
  • 46. Y. Imayoshi; M. Taniguchi. An introduction to Teichmüller spaces. Springer (1992). MR 94b:32031
  • 47. N.V. Ivanov. Complexes of curves and the Teichmüller modular group. Uspekhi Mat. Nauk 42 (1987), 43-91; English transl. Russian Math. Surveys 42 (1987), 55-107. MR 88g:32040
  • 48. H. Iwaniec. Prime geodesic theorem. J. reine angew. Math. 349 (1984), 136-159. MR 85h:11025
  • 49. H. Iwaniec. Introduction to the spectral theory of automorphic forms. Revista Matemática Iberoamericana (1995). MR 96f:11078
  • 50. F.W. Jenny. Ueber den ersten Eigenwert des Laplace-Operators auf einer Schar kompakter Riemannscher Flächen. Comment. Math. Helv. 59 (1984), 193-203.
  • 51. S. Katok. Fuchsian groups. The University of Chicago Press (1992). MR 93d:20088
  • 52. S.P. Kerckhoff. The Nielsen realization problem. Annals Math. 117 (1983), 235-265. MR 85e:32029
  • 53. S.P. Kerckhoff. Lines of minima in Teichmüller space. Duke Math. J. 65 (1992), 187-213. MR 93b:32027
  • 54. S. Kühnlein. Partial solution of a conjecture of Schmutz. Archiv d. Math. 67 (1996), 164-172. MR 97h:11069
  • 55. J. Lehner; M. Sheingorn. Simple closed geodesics on $\Gamma(3)$ arise from the Markoff spectrum. Bulletin AMS 11 (1984), 359-362. MR 86b:11033
  • 56. F. Luo. Geodesic length functions and Teichmüller spaces. To appear in J. Diff. Geom. MR 98a:32023
  • 57. W. Luo; P. Sarnak. Number variance for arithmetic hyperbolic surfaces. Commun. Math. Phys. 161 (1994), 419-432. MR 95k:11076
  • 58. W. Luo; P. Sarnak. Quantum ergodicity of eigenfunctions on $PSL_{2}(\text{\emph{\sf Z}})\setminus \text{\emph{\sf H}}^{2}$. IHES Publ. Math. 81 (1995), 207-237. MR 97f:11037
  • 59. G.A. Margulis. Discrete subgroups of semisimple Lie groups. Springer (1991). MR 92h:22021
  • 60. J. Marklof. On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds. Nonlinearity 9 (1996), 517-536. MR 97d:11086
  • 61. A. Markoff. Sur les formes binaires indéfinies. Math. Annalen 15 (1879), 381-406.
  • 62. G. McShane. A remarkable identity for lengths of curves. PhD Thesis, University of Warwick (1991).
  • 63. G. McShane. Simple geodesics and a series constant over Teichmüller space. To appear in Invent. math.
  • 64. G. McShane; I. Rivin. Simple curves on hyperbolic tori. C. R. Acad. Sci. Paris 320 (1995), 1523-1528. MR 96g:57018
  • 65. G. McShane; I. Rivin. A norm on homology of surfaces and counting simple geodesics. Internat. Math. Res. Notices (1995), 61-69. MR 96b:57014
  • 66. H. Minkowski. Geometrie der Zahlen. Teubner 1896/1910; Chelsea (1953).
  • 67. R. Miranda. Algebraic curves and Riemann surfaces. Graduate studies in math. vol. 5, AMS (1995). MR 96f:14029
  • 68. M. Morse. Topologically non-degenerate functions on a compact $n$-manifold $M$. J. Analyse Math. 7 (1959), 189-208. MR 22:4071
  • 69. D. Mumford. A remark on Mahler's compactness theorem. Proc. AMS 28 (1971), 289-294. MR 43:2157
  • 70. J. Nielsen. Collected mathematical papers. Vols. 1 and 2. Birkhäuser (1986). MR 88a:01070a; MR 88a:01070b
  • 71. B. Osgood; R. Phillips; P. Sarnak. Extremals of determinants of Laplacians. J. Funct. Anal. 80 (1988), 148-211. MR 90d:58159
  • 72. B. Osgood; R. Phillips; P. Sarnak. Moduli space, heights and isospectral sets of plane domains. Ann. Math. 129 (1989), 293-362. MR 91a:58196
  • 73. R.C. Penner. Perturbative series and the moduli space of Riemann surfaces. J. Diff. Geom. 27 (1988), 35-53. MR 89h:32045
  • 74. R.C. Penner with J.L. Harer. Combinatorics of train tracks. Princeton University Press (1992). MR 94b:57018
  • 75. A. Pollington; W. Moran. Number theory with an emphasis on the Markoff spectrum. Marcel Dekker (1993). MR 93m:11002
  • 76. J. Quine; P. Sarnak eds. Extremal Riemann surfaces. Contemp. Math. 201, AMS (1997). MR 97g:00020
  • 77. B. Randol. The length spectrum of a Riemann surface is always of unbounded multiplicity. Proc. AMS 78 (1980), 455-456. MR 80k:58100
  • 78. B. Riemann. Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. In Gesammelte Werke. Collected papers. Springer + Teubner, Leipzig (1990), 35-75.
  • 79. I. Rivin. Private communication.
  • 80. P. Sarnak. Prime geodesic theorems. Doctoral thesis, Stanford (1980).
  • 81. P. Sarnak. Extremal geometries. In [76], 1-7.MR 98a:58043
  • 82. P. Schmutz. Riemann surfaces with shortest geodesic of maximal length. Geom. Funct. Anal. 3 (1993), 564-631. MR 95j:30039
  • 83. P. Schmutz. Congruence subgroups and maximal Riemann surfaces. J. Geom. Anal. 4 (1994), 207-218. MR 95i:57017
  • 84. P. Schmutz. Systoles of Riemann surfaces. Manuscripta Math. 85 (1994), 429-447. MR 95i:57017
  • 85. P. Schmutz. New results concerning the number of small eigenvalues on Riemann surfaces. J. reine angew. Math. 471 (1996), 201-220. MR 97e:58225
  • 86. P. Schmutz. Arithmetic groups and the length spectrum of Riemann surfaces. Duke Math. J. 84 (1996), 199-215. MR 98a:11068
  • 87. P. Schmutz Schaller. The modular torus has maximal length spectrum. Geom. Funct. Anal. 6 (1996), 1057-1073. MR 98c:11046
  • 88. P. Schmutz Schaller. Extremal Riemann surfaces with a large number of systoles. In [76], 9-19. MR 98c:11064
  • 89. P. Schmutz Schaller. Geometric characterization of hyperelliptic Riemann surfaces. Preprint (1996).
  • 90. P. Schmutz Schaller. Systole is a topological Morse function for Riemann surfaces. Preprint (1997).
  • 91. P. Schmutz Schaller. Teichmüller space and fundamental domains of Fuchsian groups. Preprint (1997).
  • 92. R. Schoen; S. Wolpert; S.-T. Yau. Geometric bounds on the low eigenvalues of a compact surface. In: Geometry of the Laplace operator. Proc. Symp. Pure Math. AMS 36 (1980), 279-285. MR 81i:58052
  • 93. A. Selberg. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47-87. MR 19:531g
  • 94. M. Seppälä; T. Sorvali. Geometry of Riemann surfaces and Teichmüller spaces. North-Holland (1992). MR 94b:32034
  • 95. C.L. Siegel. Ueber die Klassenzahl quadratischer Zahlkörper. Acta Arith. 1 (1935), 83-86.
  • 96. C.L. Siegel. Lectures on the geometry of numbers. Springer (1989). MR 91d:11070
  • 97. K. Takeuchi. A characterization of arithmetic Fuchsian groups. J. Math. Soc. Japan 27 (1975), 600-612. MR 53:2842
  • 98. W.P. Thurston. Earthquakes in two-dimensional hyperbolic geometry. In Low-dimensional topology and Kleinian groups, D.B.A. Epstein ed. Cambridge Univ. Press (1986), 91-112. MR 88m:57015
  • 99. W.P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS 19 (1988), 417-431. MR 89k:57023
  • 100. A.J. Tromba. Teichmüller theory in Riemannian geometry. Birkhäuser (1992). MR 93h:32028
  • 101. M. Tsuji. Theorems in the geometry of numbers for Fuchsian groups. J. Math. Soc. Japan 4 (1952), 189-193. MR 14:623f
  • 102. M. Tsuji. Analogue of Blichfeldt's theorem for Fuchsian groups. Comment. Math. Univ. St. Paul 5 (1956), 7-24. MR 18:383a
  • 103. A.B. Venkov. Spectral theory of automorphic functions. Trudy Mat. Inst. Steklov 153 (1981), 3-171 (Russian); English transl. in Proc. Steklov Inst. Math. (1982), issue 4, 1-163. MR 85j:11060b
  • 104. G. Voronoï. Sur quelques propriétés des formes quadratiques positives parfaites. J. reine angew. Math. 133 (1908), 97-178.
  • 105. M. Wolf. The Teichmüller theory of harmonic maps. J. Diff. Geom. 29 (1989), 449-479. MR 90h:58023
  • 106. S.A. Wolpert. On the Weil-Petersson geometry of the moduli space of curves. Amer. J. Math. 107 (1985), 969-997. MR 87b:32040
  • 107. S.A. Wolpert. Thurston's Riemannian metric for Teichmüller space. J. Diff. Geom. 23 (1986), 143-174. MR 88e:32035
  • 108. S.A. Wolpert. Geodesic length functions and the Nielsen problem. J. Diff. Geom. 25 (1987), 275-296. MR 88c:32032
  • 109. R.L. Zimmer. Ergodic theory and semisimple groups. Birkhäuser (1985). MR 86j:22014

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 30F45, 53C22, 57M50, 11F06, 11H99, 32G15, 11F72

Retrieve articles in all journals with MSC (1991): 30F45, 53C22, 57M50, 11F06, 11H99, 32G15, 11F72


Additional Information

Paul Schmutz Schaller
Email: Paul.Schmutz@maths.unine.ch

DOI: https://doi.org/10.1090/S0273-0979-98-00750-2
Received by editor(s): October 1, 1997
Received by editor(s) in revised form: March 19, 1998
Additional Notes: Partially supported by Schweizerischer Nationalfonds.
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society