Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Ricardo Estrada and Ram P. Kanwal
Title: Asymptotic analysis. A distributional approach
Additional book information: Birkhäuser, Basel and Boston, MA, 1994, ix + 258 pp., ISBN 0-8176-3716-8, $49.50

References [Enhancements On Off] (What's this?)

  • [A] V. G. Avakumovi\'{c}: Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten. Math. Z. 65 (1956), 327-394. MR 18:316a
  • [Ber] P. Bérard: Spectral geometry: direct and inverse problems. Lecture Notes in Mathematics 1207. Springer: Heidelberg 1986. MR 88f:58146
  • [BeGaMa] M. Berger, P. Gauduchon, and E. Mazet, Le spectre d'une variété Riemannienne. Lecture Notes in Mathematics 194. Springer: Heidelberg 1971. MR 43:8025
  • [BL] J. Brüning and M. Lesch: On the spectral geometry of algebraic curves. J. reine angewandte Math. 474 (1996), 25-66. MR 97d:58193
  • [BS] J. Brüning and R. T. Seeley: Regular singular asymptotics. Adv. Math. 58 (1985), 133-148. MR 87b:41032
  • [DG] H. Duistermaat and V. Guillemin: The spectrum of positive elliptic operators and periodic bicharacteristics. Inventiones math. 29 (1975), 39-79.
  • [H] L. Hörmander: The spectral function of an elliptic operator. Acta Math. 121 (1968), 193-218. MR 58:29418
  • [Ha] J. Hadamard: Lectures on Cauchy's problem in linear partial differential equations. Dover Publ.: New York 1952.
  • [I] V. Ya. Ivrii: Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Functional Analysis Appl. 14 (1980), 98-106. MR 82m:58057
  • [Je] H. Jeffreys: Asymptotic approximations. Clarendon Press; Oxford 1962. MR 26:5334
  • [L] B. M. Levitan: On the asymptotic behavior of the spectral function of a self-adjoint differential equation of second order. Izv. Akad. Nauk SSR ser. Mat. 16 (1952), 325-352. MR 15:315e
  • [McKS] H. P. Mckean and I. M. Singer: Curvature and the eigenvalues of the Laplacian. J. Diff. Geom. 1 (1967), 43-69. MR 36:828
  • [MPl] S. Minakshisundaram and Å. Pleijel: Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canadian J. Math. 1 (1949), 242-256. MR 11:108b
  • [Mu] J. D. Murray: Asymptotic Analysis. Springer: Heidelberg 1984. MR 85m:34085
  • [Ol] F. W. J. Olver: Asymptotics and special functions. Academic Press: New York 1974. MR 55:8655
  • [OPS] B. Osgood, R. Phillips, and P. Sarnak: Compact isospectral sets of surfaces. J. Funct. Analysis 80 (1988), 212-234. MR 90d:58160
  • [Ph] Pham The Lai: Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres relatifs au laplacien. Math. Scand. 48 (1981), 5-38. MR 83b:35127a
  • [S] R. T. Seeley: An estimate near the boundary for the spectral function of the Laplace operator. Am. J. Math. 102 (1980), 869-902. MR 82k:58097
  • [W] H. Weyl: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71 (1912), 441-479.
  • [Wa] W. Wasow: Asymptotic expansions for ordinary differential equations. John Wiley: New York 1965. MR 34:3041
  • [Wal] A. Walfisz: Gitterpunkte in mehrdimensionalen Kugeln. Monografie Matematyczne 33. Warschau 1957. MR 20:3826
  • [WhWat] E. T. Whittacker and G. N. Watson: A course of modern analysis. Cambridge University Press: Cambridge 1965. MR 31:2375

Review Information:

Reviewer: Jochen Brüning
Affiliation: Humboldt-Universität zu Berlin, Institut für Mathematik
Journal: Bull. Amer. Math. Soc. 35 (1998), 233-241
MSC (1991): Primary 34E05
Review copyright: © Copyright 1998 American Mathematical Society
American Mathematical Society