Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Normal families: New perspectives


Author: Lawrence Zalcman
Journal: Bull. Amer. Math. Soc. 35 (1998), 215-230
MSC (1991): Primary 30D45; Secondary 30D35, 34A20, 58F23
DOI: https://doi.org/10.1090/S0273-0979-98-00755-1
MathSciNet review: 1624862
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper surveys some surprising applications of a lemma characterizing normal families of meromorphic functions on plane domains. These include short and efficient proofs of generalizations of (i) the Picard Theorems, (ii) Gol'dberg's Theorem (a meromorphic function on $\mathbb{C}$ which is the solution of a first-order algebraic differential equation has finite order), and (iii) the Fatou-Julia Theorem (the Julia set of a rational function of degree $d\ge 2$ is the closure of the repelling periodic points). We also discuss Bloch's Principle and provide simple solutions to some problems of Hayman connected with this principle.


References [Enhancements On Off] (What's this?)

  • 1. Gerardo Aladro and Steven G. Krantz, A criterion for normality in $\Bbb C^{n}$, J. Math. Anal. Appl. 161 (1991), 1-8. MR 92j:32004
  • 2. I.N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252-256. MR 37:1599
  • 3. Detlef Bargmann, Simple proofs of some fundamental properties of the Julia set, preprint.
  • 4. G. Barsegian, Geometrical theory of meromorphic functions, manuscript.
  • 5. Walter Bergweiler, On a theorem of Gol'dberg concerning meromorphic solutions of algebraic differential equations, Complex Variables Theory Appl. (to appear).
  • 6. Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355-373. MR 96h:30055
  • 7. Andreas Bolsch, Repulsive periodic points of meromorphic functions, Complex Variables Theory Appl. 31 (1996), 75-79. MR 98c:30033
  • 8. Mario Bonk and Alexandre Eremenko, Schlicht regions for entire and meromorphic functions, preprint.
  • 9. Robert Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219. MR 57:10010
  • 10. Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer, 1993. MR 94h:30033
  • 11. Chen Huaihui, Yosida functions and Picard values of integral functions and their derivatives, Bull. Austral. Math. Soc. 54 (1996), 373-381. MR 97k:30035
  • 12. Chen Huaihui and Fang Mingliang, On the value distribution of $f^{n}f'$, Sci. China Ser. A 38 (1995), 789-798. MR 97a:30035
  • 13. Chen Huaihui and Gu Yongxing, An improvement of Marty's criterion and its applications, Sci. China Ser. A 36 (1993), 674-681. MR 94j:30031
  • 14. Huai-hui Chen and Xin-hou Hua, Normality criterion and singular directions, Proceedings of the Conference on Complex Analysis, (Tianjin, 1992), International Press, 1994, pp. 34-40. MR 96d:30039
  • 15. Chi-Tai Chuang, Normal Families of Meromorphic Functions, World Scientific, 1993. MR 95d:30065
  • 16. J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389-392. MR 35:5618
  • 17. J. Clunie and W.K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv 40 (1966), 117-148. MR 33:282
  • 18. David Drasin, Normal families and the Nevanlinna theory, Acta Math. 122 (1969), 231-263. MR 40:2835
  • 19. Alexandre Eremenko, Bloch radius, normal families, and quasiregular mappings, preprint.
  • 20. -, Normal holomorphic curves from parabolic regions to projective spaces, preprint.
  • 21. Jan-Erik Fornaess, Dynamics in Several Complex Variables, CBMS 87, Amer. Math. Soc., Providence, 1996. MR 96j:32033
  • 22. Günter Frank and Wilhelm Schwick, A counterexample to the generalized Bloch principle, New Zealand J. Math. 23 (1994), 121-123. MR 95m:30044
  • 23. Günter Frank and Yufei Wang, On the meromorphic solutions of algebraic differential equations, preprint.
  • 24. Hirotaka Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, J. Math. Soc. Japan 40 (1988), 237-249. MR 89b:53013
  • 25. -, Value Distribution Theory of the Gauss Map of Minimal Surfaces in R$^{m}$, Vieweg, Braunschweig, 1993. MR 95d:32029
  • 26. A.A. Gol'dberg, On single-valued solutions of first-order differential equations, Ukrain. Math. Zh. 8 (1956), 254-261.
  • 27. W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9-42. MR 22:1675
  • 28. -, Research Problems in Function Theory, Athlone Press, London, 1967. MR 36:359
  • 29. Einar Hille, Analytic Function Theory, Vol. 2, Ginn, Boston, 1962. MR 34:1490
  • 30. A. Hinkkanen, Normal families and Ahlfors's five islands theorem, New Zealand J. Math. 22 (1993), 39-41. MR 95b:30049
  • 31. Shoshichi Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970. MR 43:3503
  • 32. Ku Yung-hsing, Sur les familles normales de fonctions méromorphes, Sci. Sinica 21 (1978), 431-445. MR 80a:30033
  • 33. Ku Yongxing, Un critère de normalité des familles de fonctions méromorphes, Sci. Sinica Special Issue 1 (1979), 267-274 (Chinese).
  • 34. Serge Lang, Introduction to Complex Hyperbolic Spaces, Springer, 1987. MR 88f:32065
  • 35. Peter Lappan, A criterion for a meromorphic function to be normal, Comment. Math. Helv. 49 (1974), 492-495. MR 52:755
  • 36. -, A uniform approach to normal families, Rev. Roumaine Math. Pures Appl. 39 (1994), 691-702. MR 96b:30077
  • 37. Li Song-ying and Xie Hui-chun, On normal families of meromorphic functions, Acta Math. Sinica 29 (1986), 468-476 (Chinese). MR 88f:30048
  • 38. F. Marty, Recherches sur le répartition des valeurs d'une fonction méromorphe, Ann. Fac. Sci. Univ. Toulouse (3) 23 (1931), 183-261.
  • 39. David Minda, Yosida functions, Lectures on Complex Analysis (Xian, 1987) (Chi-Tai Chuang, ed.), World Scientific Pub. Co, Singapore, 1988, pp. 197-213. MR 90d:30097
  • 40. Ruth Miniowitz, Normal families of quasimeromorphic mappings, Proc. Amer. Math. Soc. 84 (1982), 35-43. MR 83c:30026
  • 41. Carlo Miranda, Sur un nouveau critère de normalité pour les familles de fonctions holomorphes, Bull. Soc. Math. France 63 (1935), 185-196.
  • 42. Paul Montel, Leçons sur les familles normales des fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.
  • 43. Erwin Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), 239-259. MR 80d:30026
  • 44. Rolf Nevanlinna, Analytic Functions, Springer, 1970. MR 43:5003
  • 45. I.B. Oshkin, On a test for the normality of families of holomorphic functions, Uspehi Mat. Nauk 37 (2) (1982), 221-222; Russian Math. Surveys 37 (2) (1982), 237-238. MR 83f:30026
  • 46. Robert Osserman, Proof of a conjecture of Nirenberg, Comm. Pure Appl. Math. 12 (1959), 229-232. MR 21:4436
  • 47. -, Minimal surfaces in $\mathbb{R}^{3}$, in Global Differential Geometry (S.S. Chern, ed.), Math. Assoc. Amer., 1989, pp. 73-98. MR 90g:53012
  • 48. Pang Xue-cheng, Bloch's principle and normal criterion, Sci. China Ser. A 32 (1989), 782-791. MR 91i:30031
  • 49. -, On normal criterion of meromorphic functions, Sci. China Ser. A 33 (1990), 521-527. MR 92b:30041
  • 50. Pang Xue-cheng and Lawrence Zalcman, On theorems of Hayman and Clunie, New Zealand J. Math. (to appear).
  • 51. -, Normal families and shared values, preprint.
  • 52. Seppo Rickman, On the number of omitted values of entire quasiregular mappings, J. Analyse Math. 37 (1980), 100-117. MR 81m:30030
  • 53. -, Quasiregular Mappings, Springer, 1993. MR 95g:30026
  • 54. Abraham Robinson, Metamathematical problems, J. Symbolic Logic 38 (1973), 500-516. MR 49:2240
  • 55. Antonio Ros, The Gauss map of minimal surfaces, preprint.
  • 56. H.L. Royden, A criterion for the normality of a family of meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A. I 10 (1985), 499-500. MR 86i:30040
  • 57. Lee A. Rubel, Four counterexamples to Bloch's principle, Proc. Amer. Math. Soc. 98 (1986), 257-260. MR 87i:30064
  • 58. Stanis{\l}aw Saks and Antoni Zymund, Analytic Functions, 3rd ed., Elsevier, 1971.
  • 59. Joel L. Schiff, Normal Families, Springer, 1993. MR 94f:30046
  • 60. Wilhelm Schwick, Normality criteria for families of meromorphic functions, J. Analyse Math. 52 (1989), 241-289. MR 90k:30061
  • 61. -, On a normality criterion of H.L. Royden, New Zealand J. Math. 23 (1994), 91-92. MR 95g:30047
  • 62. -, Repelling periodic points in the Julia set, Bull. London Math. Soc. 29 (1997), 314-316. MR 97m:30029
  • 63. Jussi Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics 229, Springer, 1971. MR 56:12260
  • 64. H. Wu, Some theorems on projective hyperbolicity, J. Math. Soc. Japan 33 (1981), 79-104. MR 82j:53061
  • 65. Xue Guo-fen and Pang Xue-cheng, A criterion for normality of a family of meromorphic functions, J. East China Norm. Univ. Natur. Sci. Ed. (1988), no. 2, 15-22 (Chinese). MR 90i:30051
  • 66. Yang Le and Chang Kuang-hou, Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples, I. Un nouveau critère et quelques applications, Sci. Sinica 14 (1965), 1258-1271.
  • 67. -, Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples, II. Généralisations, Sci. Sinica 15 (1966), 433-453.
  • 68. Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813-817. MR 52:757
  • 69. -, Modern perspectives on classical function theory, Rocky Mountain J. Math. 12 (1982), 75-92. MR 83d:30003
  • 70. -, Normal families revisited, Complex Analysis and Related Topics (J.J.O.O. Wiegerinck, ed.), University of Amsterdam, 1993, pp. 149-164.
  • 71. -, On some questions of Hayman, unpublished manuscript, 5pp., 1994.
  • 72. -, New light on normal families, Proceedings of the Ashkelon Workshop on Complex Function Theory (May, 1996) (L. Zalcman, ed.), Bar-Ilan Univ., 1997, pp. 237-245. CMP 98:03

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 30D45, 30D35, 34A20, 58F23

Retrieve articles in all journals with MSC (1991): 30D45, 30D35, 34A20, 58F23


Additional Information

Lawrence Zalcman
Affiliation: Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
Email: zalcman@macs.biu.ac.il

DOI: https://doi.org/10.1090/S0273-0979-98-00755-1
Keywords: Normal families, Picard's Theorem, algebraic differential equations, Julia set, Bloch's Principle
Received by editor(s): October 15, 1997
Received by editor(s) in revised form: May 26, 1998
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society