Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Barry D. Hughes
Title: Random walks and random environments
Additional book information: Vol. 1: Random walks, Clarendon Press, Oxford, New York, 1995, xxi+631 pp., ISBN 0-19-853788-3, $95.00; 1996, xxiv+526 pp., ISBN 0-19-853789-1, $115.00

References [Enhancements On Off] (What's this?)

  • 1. Peter G. Doyle and J. Laurie Snell, Random walks and electric networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984. MR 920811
  • 2. William Feller, An introduction to probability theory and its applications. Vol. I, Third edition, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0228020
  • 3. William Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
  • 4. Geoffrey Grimmett, Percolation, Springer-Verlag, New York, 1989. MR 995460
  • 5. G. Grimmett. Percolation and Disordered Systems (St. Flour lectures, 1996), Lecture Notes in Math., Volume 1665. Springer, Berlin, (1997). CMP 98:06
  • 6. Harry Kesten, Percolation theory for mathematicians, Progress in Probability and Statistics, vol. 2, Birkhäuser, Boston, Mass., 1982. MR 692943
  • 7. Gregory F. Lawler, Intersections of random walks, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1117680
  • 8. Neal Madras and Gordon Slade, The self-avoiding walk, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1197356
  • 9. Pál Révész, Random walk in random and nonrandom environments, World Scientific Publishing Co., Inc., Teaneck, NJ, 1990. MR 1082348
  • 10. Frank Spitzer, Principles of random walk, 2nd ed., Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, Vol. 34. MR 0388547
  • 11. Dietrich Stauffer, Introduction to percolation theory, Taylor & Francis, Ltd., London, 1985. MR 849782
  • 12. C. Vanderzande. Lattice Models of Polymers. Cambridge University Press, Cambridge, (1998).
  • 13. George H. Weiss, Aspects and applications of the random walk, Random Materials and Processes, North-Holland Publishing Co., Amsterdam, 1994. MR 1280031

Review Information:

Reviewer: Gordon Slade
Affiliation: McMaster University
Email: slade@math.mcmaster.ca
Journal: Bull. Amer. Math. Soc. 35 (1998), 347-349
DOI: https://doi.org/10.1090/S0273-0979-98-00762-9
Review copyright: © Copyright 1998 American Mathematical Society