Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

   
 

 

Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - an analytic approach


Authors: Fritz Gesztesy and Rudi Weikard
Journal: Bull. Amer. Math. Soc. 35 (1998), 271-317
MSC (1991): Primary 34L40, 35Q53, 35Q55; Secondary 34B30, 34L05, 35Q51
DOI: https://doi.org/10.1090/S0273-0979-98-00765-4
MathSciNet review: 1638298
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We provide an overview of elliptic algebro-geometric solutions of the KdV and AKNS hierarchies, with special emphasis on Floquet theoretic and spectral theoretic methods. Our treatment includes an effective characterization of all stationary elliptic KdV and AKNS solutions based on a theory developed by Hermite and Picard.


References [Enhancements On Off] (What's this?)

  • 1. M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, vol. 149, Cambridge University Press, Cambridge, 1991. MR 1149378
  • 2. Mark J. Ablowitz, David J. Kaup, Alan C. Newell, and Harvey Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249–315. MR 0450815
  • 3. Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
  • 4. M. Adler and J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), no. 1, 1–30. MR 0501106
  • 5. H. Airault, H. P. McKean, and J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30 (1977), no. 1, 95–148. MR 0649926, https://doi.org/10.1002/cpa.3160300106
  • 6. N. I. Ahiezer, On the spectral theory of Lamé’s equation, Istor.-Mat. Issled. 23 (1978), 77–86, 357 (Russian). MR 517631
  • 7. N. I. Akhiezer, Elements of the theory of elliptic functions, Translations of Mathematical Monographs, vol. 79, American Mathematical Society, Providence, RI, 1990. Translated from the second Russian edition by H. H. McFaden. MR 1054205
  • 8. G. L. Alfimov, A. R. It⋅s, and N. E. Kulagin, Modulation instability of solutions of the nonlinear Schrödinger equation, Teoret. Mat. Fiz. 84 (1990), no. 2, 163–172 (Russian, with English summary); English transl., Theoret. and Math. Phys. 84 (1990), no. 2, 787–793 (1991). MR 1077808, https://doi.org/10.1007/BF01017675
  • 9. P. É. Appell, Sur la transformation des équations différentielles linéaires, Comptes Rendus 91 (1880), 211-214.
  • 10. F. M. Arscott, Periodic differential equations. An introduction to Mathieu, Lamé, and allied functions, International Series of Monographs in Pure and Applied Mathematics, Vol. 66. A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0173798
  • 11. N. Asano and Y. Kato, Algebraic and spectral methods for nonlinear wave equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 49, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1990. MR 1093236
  • 12. O. Babelon and M. Talon, The symplectic structure of the spin Calogero model, Phys. Lett. A 236 (1997), 462-468. CMP 98:06
  • 13. M. V. Babich, A. I. Bobenko, and V. B. Matveev, Reductions of Riemann theta functions of genus 𝑔 to theta functions of lesser genus, and symmetries of algebraic curves, Dokl. Akad. Nauk SSSR 272 (1983), no. 1, 13–17 (Russian). MR 725053
  • 14. M. V. Babich, A. I. Bobenko, and V. B. Matveev, Solution of nonlinear equations, integrable by the inverse problem method, in Jacobi theta-functions and the symmetry of algebraic curves, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 3, 511–529, 672 (Russian). MR 794954
  • 15. H. F. Baker, Note on the foregoing paper, ``Commutative ordinary differential operators,'' by J. L. Burchnall and J. W. Chaundy, Proc. Roy. Soc. London A 118 (1928), 584-593.
  • 16. E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994.
  • 17. E. D. Belokolos, A. I. Bobenko, V. B. Matveev, and V. Z. Ènol′skiĭ, Algebro-geometric principles of superposition of finite-zone solutions of integrable nonlinear equations, Uspekhi Mat. Nauk 41 (1986), no. 2(248), 3–42 (Russian). MR 842160
  • 18. E. D. Belokolos and V. Z. Ènol′skiĭ, Verdier’s elliptic solitons and the Weierstrass reduction theory, Funktsional. Anal. i Prilozhen. 23 (1989), no. 1, 57–58 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 1, 46–47. MR 998428, https://doi.org/10.1007/BF01078572
  • 19. E. D. Belokolos and V. Z. Ènol′skiĭ, Isospectral deformations of elliptic potentials, Uspekhi Mat. Nauk 44 (1989), no. 5(269), 155–156 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 5, 191–193. MR 1040275, https://doi.org/10.1070/RM1989v044n05ABEH002212
  • 20. E. D. Belokolos and V. Z. Ènol′skiĭ, Reduction of theta functions and elliptic finite-gap potentials, Acta Appl. Math. 36 (1994), no. 1-2, 87–117. MR 1303857, https://doi.org/10.1007/BF01001544
  • 21. Daniel Bennequin, Hommage à Jean-Louis Verdier: au jardin des systèmes intégrables, Integrable systems (Luminy, 1991) Progr. Math., vol. 115, Birkhäuser Boston, Boston, MA, 1993, pp. 1–36 (French). MR 1279815, https://doi.org/10.1007/s10107-007-0137-1
  • 22. G. D. Birkhoff, Existence and oscillation theorem for a certain boundary value problem, Trans. Amer. Math. Soc. 10 (1909), 259-270.
  • 23. Björn Birnir, Complex Hill’s equation and the complex periodic Korteweg-de Vries equations, Comm. Pure Appl. Math. 39 (1986), no. 1, 1–49. MR 820337, https://doi.org/10.1002/cpa.3160390102
  • 24. Björn Birnir, Singularities of the complex Korteweg-de Vries flows, Comm. Pure Appl. Math. 39 (1986), no. 3, 283–305. MR 829842, https://doi.org/10.1002/cpa.3160390302
  • 25. Björn Birnir, An example of blow-up, for the complex KdV equation and existence beyond the blow-up, SIAM J. Appl. Math. 47 (1987), no. 4, 710–725. MR 898829, https://doi.org/10.1137/0147049
  • 26. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78 (1946), 1-96. MR 7:382d
  • 27. V. M. Buchstaber, V. Z. Enolskiĭ, and D. V. Leĭkin, Hyperelliptic Kleinian functions and applications, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, vol. 179, Amer. Math. Soc., Providence, RI, 1997, pp. 1–33. MR 1437155, https://doi.org/10.1090/trans2/179/01
  • 28. -, Kleinian functions, hyperelliptic Jacobians and applications, to appear in Revs. in Mathematics and Mathematical Physics, Vol. 10, S. Novikov and I. Krichever (eds.), Gordon & Breach, pp. 1-115.
  • 29. J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. London Math. Soc. Ser. 2 21 (1923), 420-440.
  • 30. -, Commutative ordinary differential operators, Proc. Roy. Soc. London A 118 (1928), 557-583.
  • 31. -, Commutative ordinary differential operators. II.-The identity $P^n=Q^m,$ Proc. Roy. Soc. London A134 (1932), 471-485.
  • 32. H. Burkhardt, Elliptische Functionen, 2nd ed., Verlag von Veit, Leipzig, 1906.
  • 33. Mutiara Buys and Allan Finkel, The inverse periodic problem for Hill’s equation with a finite-gap potential, J. Differential Equations 55 (1984), no. 2, 257–275. MR 764126, https://doi.org/10.1016/0022-0396(84)90083-4
  • 34. F. Calogero, Exactly solvable one-dimensional many-body problems, Lett. Nuovo Cimento (2) 13 (1975), no. 11, 411–416. MR 0388895
  • 35. F. Calogero, Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related “solvable” many-body problems, Nuovo Cimento B (11) 43 (1978), no. 2, 177–241 (English, with Italian and Russian summaries). MR 489287, https://doi.org/10.1007/BF02721013
  • 36. R. C. Carlson and K. R. Goodearl, Commutants of ordinary differential operators, J. Differential Equations 35 (1980), no. 3, 339–365. MR 563386, https://doi.org/10.1016/0022-0396(80)90033-9
  • 37. K. Chandrasekharan, Elliptic functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396
  • 38. D. V. Čudnovs′kiĭ and G. V. Choodnovsky, Pole expansions of nonlinear partial differential equations, Nuovo Cimento B (11) 40 (1977), no. 2, 339–353 (English, with Italian and Russian summaries). MR 0448415, https://doi.org/10.1007/BF02728217
  • 39. P. L. Christiansen, J. C. Eilbeck, V. Z. Enolskii, and N. A. Kostov, Quasi-periodic solutions of the coupled nonlinear Schrödinger equations, Proc. Roy. Soc. London Ser. A 451 (1995), no. 1943, 685–700. MR 1369055, https://doi.org/10.1098/rspa.1995.0149
  • 40. D. V. Chudnovsky, Meromorphic solutions of nonlinear partial differential equations and many-particle completely integrable systems, J. Math. Phys. 20 (1979), no. 12, 2416–2422. MR 553503, https://doi.org/10.1063/1.524048
  • 41. David V. Chudnovsky and Gregory V. Chudnovsky, Travaux de J. Drach (1919), Classical quantum models and arithmetic problems, Lecture Notes in Pure and Appl. Math., vol. 92, Dekker, New York, 1984, pp. 445–453. MR 756252
  • 42. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, 1985. MR 16:1022b
  • 43. E. Colombo, G. P. Pirola, and E. Previato, Density of elliptic solitons, J. Reine Angew. Math. 451 (1994), 161–169. MR 1277298
  • 44. L. A. Dickey, Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, vol. 12, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1147643
  • 45. Roger K. Dodd, J. Chris Eilbeck, John D. Gibbon, and Hedley C. Morris, Solitons and nonlinear wave equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. MR 696935
  • 46. Ron Donagi and Eyal Markman, Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, Integrable systems and quantum groups (Montecatini Terme, 1993) Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp. 1–119. MR 1397273, https://doi.org/10.1007/BFb0094792
  • 47. Ron Donagi and Edward Witten, Supersymmetric Yang-Mills theory and integrable systems, Nuclear Phys. B 460 (1996), no. 2, 299–334. MR 1377167, https://doi.org/10.1016/0550-3213(95)00609-5
  • 48. J. Drach, Sur les groupes complexes de rationalité et sur l'intégration par quadratures, C. R. Acad. Sci. Paris 167 (1918), 743-746.
  • 49. -, Détermination des cas de réduction de'léquation différentielle $d^2 y/dx^2=[\phi(x)+h]y$, C. R. Acad. Sci. Paris 168 (1919), 47-50.
  • 50. -, Sur l'intégration par quadratures de'léquation $d^2 y/dx^2=[\phi(x)+h]y$ , C. R. Acad. Sci. Paris 168 (1919), 337-340.
  • 51. P. G. Drazin and R. S. Johnson, Solitons: an introduction, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989. MR 985322
  • 52. B. A. Dubrovin, A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 41–51 (Russian). MR 0486780
  • 53. B. A. Dubrovin, Completely integrable Hamiltonian systems that are associated with matrix operators, and Abelian varieties, Funkcional. Anal. i Priložen. 11 (1977), no. 4, 28–41, 96 (Russian). MR 0650114
  • 54. -, Theta functions and non-linear equations, Russ. Math. Surv. 36:2 (1981), 11-92.
  • 55. B. A. Dubrovin, Matrix finite-gap operators, Current problems in mathematics, Vol. 23, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 33–78 (Russian). MR 734313
  • 56. B. A. Dubrovin and S. P. Novikov, Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation, Ž. Èksper. Teoret. Fiz. 67 (1974), no. 6, 2131–2144 (Russian, with English summary); English transl., Soviet Physics JETP 40 (1974), no. 6, 1058–1063. MR 0382877
  • 57. M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh and London, 1973.
  • 58. J. C. Eilbeck and V. Z. Ènol′skiĭ, Elliptic Baker-Akhiezer functions and an application to an integrable dynamical system, J. Math. Phys. 35 (1994), no. 3, 1192–1201. MR 1262739, https://doi.org/10.1063/1.530635
  • 59. J. C. Eilbeck and V. Z. Ènol′skiĭ, Elliptic solutions and blow-up in an integrable Hénon-Heiles system, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 6, 1151–1164. MR 1313194, https://doi.org/10.1017/S030821050003016X
  • 60. V. Z. Ènol′skiĭ, On the solutions in elliptic functions of integrable nonlinear equations, Phys. Lett. A 96 (1983), no. 7, 327–330. MR 714293, https://doi.org/10.1016/0375-9601(83)90001-4
  • 61. V. Z. Ènol′skiĭ, On the two-gap Lamé potentials and elliptic solutions of the Kovalevskaja problem connected with them, Phys. Lett. A 100 (1984), no. 9, 463–466. MR 736309, https://doi.org/10.1016/0375-9601(84)90826-0
  • 62. V. Z. Ènol′skiĭ, Solutions in elliptic functions of integrable nonlinear equations connected with two-zone Lamé potentials, Dokl. Akad. Nauk SSSR 278 (1984), no. 2, 305–308 (Russian). MR 762886
  • 63. V. Z. Ènol′skiĭ and J. C. Eilbeck, On the two-gap locus for the elliptic Calogero-Moser model, J. Phys. A 28 (1995), no. 4, 1069–1088. MR 1326336
  • 64. V. Z. Ènol′skiĭ and N. A. Kostov, On the geometry of elliptic solitons, Acta Appl. Math. 36 (1994), no. 1-2, 57–86. MR 1303856, https://doi.org/10.1007/BF01001543
  • 65. A. Erdélyi, On Lamé functions, Phil. Mag. (7) 31 (1941), 123-1130. MR 2:285a
  • 66. E. Fermi, J. Pasta, and S. M. Ulam, Studies in nonlinear problems, Technical Report LA-1940, Los Alamos Sci. Lab. Also in: Collected Papers of Enrico Fermi, Vol II, 978-988, University of Chicago Press, 1965.
  • 67. Allan Finkel, Eli Isaacson, and Eugene Trubowitz, An explicit solution of the inverse periodic problem for Hill’s equation, SIAM J. Math. Anal. 18 (1987), no. 1, 46–53. MR 871819, https://doi.org/10.1137/0518003
  • 68. H. Flaschka, On the inverse problem for Hill’s operator, Arch. Rational Mech. Anal. 59 (1975), no. 4, 293–309. MR 0387711, https://doi.org/10.1007/BF00250422
  • 69. G. Floquet, Sur la théorie des équations différentielles linéaires, Ann. Sci. École Norm. Sup. 8 (1879), suppl., 1-132.
  • 70. -, Sur les équations différentielles linéaires à coefficients périodiques, C. R. Acad. Sci. Paris 91 (1880), 880-882.
  • 71. -, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. École Norm. Sup. 12 (1883), 47-88.
  • 72. -, Sur les équations différentielles linéaires à coefficients doublement périodiques, C. R. Acad. Sci. Paris 98 (1884), 38-39, 82-85.
  • 73. -, Sur les équations différentielles linéaires à coefficients doublement périodiques, Ann. Sci. Ecole Norm. Sup. 1 (1884), 181-238.
  • 74. -, Addition a un mémorie sur les équations différentielles linéaires, Ann. Sci. Ecole Norm. Sup. 1 (1884), 405-408.
  • 75. Andrew Russell Forsyth, Theory of differential equations. 1. Exact equations and Pfaff’s problem; 2, 3. Ordinary equations, not linear; 4. Ordinary linear equations; 5, 6. Partial differential equations, Six volumes bound as three, Dover Publications, Inc., New York, 1959. MR 0123757
  • 76. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095-1097.
  • 77. Clifford S. Gardner, John M. Greene, Martin D. Kruskal, and Robert M. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution, Comm. Pure Appl. Math. 27 (1974), 97–133. MR 0336122, https://doi.org/10.1002/cpa.3160270108
  • 78. C. S. Gardner and G. K. Morikawa, Similarity in the asymptotic behavior of collision free hydromagnetic waves and water waves, Research Report NYO-9082, Courant Institute, 1960.
  • 79. M. G. Gasymov, Spectral analysis of a class of second-order nonselfadjoint differential operators, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 14–19, 96 (Russian). MR 565091
  • 80. M. G. Gasymov, Spectral analysis of a class of ordinary differential operators with periodic coefficients, Dokl. Akad. Nauk SSSR 252 (1980), no. 2, 277–280 (Russian). MR 571946
  • 81. Letterio Gatto and Silvio Greco, Algebraic curves and differential equations: an introduction, The Curves Seminar at Queen’s, Vol. VIII (Kingston, ON, 1990/1991) Queen’s Papers in Pure and Appl. Math., vol. 88, Queen’s Univ., Kingston, ON, 1991, pp. Exp. B, 69. MR 1143106
  • 82. I. M. Gel′fand and L. A. Dikiĭ, Asymptotic properties of the resolvent of Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations, Uspehi Mat. Nauk 30 (1975), no. 5(185), 67–100 (Russian). MR 0508337
  • 83. I. M. Gel′fand and L. A. Dikiĭ, Fractional powers of operators, and Hamiltonian systems, Funkcional. Anal. i Priložen. 10 (1976), no. 4, 13–29 (Russian). MR 0433508
  • 84. I. M. Gel′fand and L. A. Dikiĭ, Integrable nonlinear equations and the Liouville theorem, Funktsional. Anal. i Prilozhen. 13 (1979), no. 1, 8–20, 96 (Russian). MR 527517
  • 85. F. Gesztesy and H. Holden, Darboux-type transformations and hyperelliptic curves, in preparation.
  • 86. -, Hierarchies of Soliton Equations and their Algebro-Geometric Solutions, monograph in preparation.
  • 87. F. Gesztesy and R. Ratneseelan, An alternative approach to algebro-geometric solutions of the AKNS hierarchy, Rev. Math. Phys. 10 (1998), 345-391. CMP 98:14
  • 88. Fritz Gesztesy and Barry Simon, The xi function, Acta Math. 176 (1996), no. 1, 49–71. MR 1395669, https://doi.org/10.1007/BF02547335
  • 89. F. Gesztesy, B. Simon, and G. Teschl, Spectral deformations of one-dimensional Schrödinger operators, J. d'Anal. Math. 70 (1996), 267-324. CMP 97:11
  • 90. F. Gesztesy and W. Sticka, On a theorem of Picard, Proc. Amer. Math. Soc. 126 (1998), 1089-1099. CMP 98:06
  • 91. F. Gesztesy and R. Weikard, Spectral deformations and soliton equations, Differential equations with applications to mathematical physics, Math. Sci. Engrg., vol. 192, Academic Press, Boston, MA, 1993, pp. 101–139. MR 1207152, https://doi.org/10.1016/S0076-5392(08)62376-0
  • 92. -, Floquet theory revisited, Differential Equations and Mathematical Physics (ed. by I. Knowles), International Press, Boston, 1995, 67-84.
  • 93. F. Gesztesy and R. Weikard, Lamé potentials and the stationary (m)KdV hierarchy, Math. Nachr. 176 (1995), 73–91. MR 1361127, https://doi.org/10.1002/mana.19951760107
  • 94. F. Gesztesy and R. Weikard, Treibich-Verdier potentials and the stationary (m)KdV hierarchy, Math. Z. 219 (1995), no. 3, 451–476. MR 1339715, https://doi.org/10.1007/BF02572375
  • 95. F. Gesztesy and R. Weikard, On Picard potentials, Differential Integral Equations 8 (1995), no. 6, 1453–1476. MR 1329850
  • 96. Fritz Gesztesy and Rudi Weikard, A characterization of elliptic finite-gap potentials, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 7, 837–841 (English, with English and French summaries). MR 1355838
  • 97. Fritz Gesztesy and Rudi Weikard, Picard potentials and Hill’s equation on a torus, Acta Math. 176 (1996), no. 1, 73–107. MR 1395670, https://doi.org/10.1007/BF02547336
  • 98. -, A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy, Acta Math. 181 (1998), to appear.
  • 99. -, Toward a characterization of elliptic solutions of hierarchies of soliton equations, Contemp. Math., to appear.
  • 100. -, in preparation.
  • 101. M. Giertz, M. K. Kwong, and A. Zettl, Commuting linear differential expressions, Proc. Roy. Soc. Edinburgh Sect. A 87 (1980/81), no. 3-4, 331–347. MR 606340, https://doi.org/10.1017/S0308210500015250
  • 102. Jeremy Gray, Linear differential equations and group theory from Riemann to Poincaré, Birkhäuser Boston, Inc., Boston, MA, 1986. MR 891402
  • 103. Silvio Greco and Emma Previato, Spectral curves and ruled surfaces: projective models, The Curves Seminar at Queen’s, Vol. VIII (Kingston, ON, 1990/1991) Queen’s Papers in Pure and Appl. Math., vol. 88, Queen’s Univ., Kingston, ON, 1991, pp. Exp. F, 33. MR 1143110
  • 104. P. G. Grinevich, Rational solutions of equations of commutation of differential operators, Funktsional. Anal. i Prilozhen. 16 (1982), no. 1, 19–24, 96 (Russian). MR 648805
  • 105. V. Guillemin and A. Uribe, Hardy functions and the inverse spectral method, Comm. Partial Differential Equations 8 (1983), no. 13, 1455–1474. MR 714048, https://doi.org/10.1080/03605308308820310
  • 106. G.-H. Halphen, Memoire sur la reduction des equations differentielles lineaires aux formes integrales, Mem. pres. l'Acad. Sci., France 28 (1884), 1-300.
  • 107. -, Sur une nouvelle classe d'équations différentielles linéaires intégrables, C. R. Acad. Sci. Paris 101 (1885), 1238-1240.
  • 108. -, Traité des Fonctions Elliptiques, tome 2, Gauthier-Villars, Paris, 1888.
  • 109. G. Hamel, Über die lineare Differentialgleichung zweiter Ordnung mit periodischen Koeffizienten, Math. Ann. 73 (1913), 371-412.
  • 110. O. Haupt, Über lineare homogene Differentialgleichungen 2. Ordnung mit periodischen Koeffizienten, Math. Ann. 79 (1919), 278-285.
  • 111. C. Hermite, Sur quelques applications des fonctions elliptiques, Comptes Rendus 85 (1877), 689-695, 728-732, 821-826.
  • 112. -, Oeuvres, tome 3, Gauthier-Villars, Paris, 1912.
  • 113. G. W. Hill, On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon, Acta Math. 8 (1886), 1-36. Reprinted from a paper first published in 1877.
  • 114. Einar Hille, Ordinary differential equations in the complex domain, Dover Publications, Inc., Mineola, NY, 1997. Reprint of the 1976 original. MR 1452105
  • 115. Harry Hochstadt, On the determination of a Hill’s equation from its spectrum, Arch. Rational Mech. Anal. 19 (1965), 353–362. MR 0181792, https://doi.org/10.1007/BF00253484
  • 116. I. D. Iliev, E. Kh. Khristov, and K. P. Kirchev, Spectral methods in soliton equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 73, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994. Appendix 3.B by A. Yanovski [A. B. Yanovskiĭ]. MR 1400888
  • 117. E. L. Ince, Further investigations into the periodic Lamé functions, Proc. Roy. Soc. Edinburgh 60 (1940), 83-99. MR 2:46d
  • 118. -, Ordinary Differential Equations, Dover, New York, 1956. MR 6:65f
  • 119. H. Itoyama and A. Morozov, Integrability and Seiberg-Witten theory—curves and periods, Nuclear Phys. B 477 (1996), no. 3, 855–877. MR 1413477, https://doi.org/10.1016/0550-3213(96)00358-6
  • 120. A. R. Its, Inversion of hyperelliptic integrals, and integration of nonlinear differential equations, Vestnik Leningrad. Univ. 7 Mat. Meh. Astronom. vyp. 2 (1976), 39–46, 162 (Russian, with English summary). MR 0609747
  • 121. A. R. It⋅s and V. Z. Ènol′skiĭ, The dynamics of the Calogero-Moser system and reduction of hyperelliptic integrals to elliptic integrals, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 73–74 (Russian). MR 831055
  • 122. A. R. Its and V. B. Matveev, Schrödinger operators with the finite-band spectrum and the 𝑁-soliton solutions of the Korteweg-de Vries equation, Teoret. Mat. Fiz. 23 (1975), no. 1, 51–68 (Russian, with English summary). MR 0479120
  • 123. Katsunori Iwasaki, Inverse problem for Sturm-Liouville and Hill equations, Ann. Mat. Pura Appl. (4) 149 (1987), 185–206. MR 932784, https://doi.org/10.1007/BF01773933
  • 124. F. Klein, Über den Hermite'schen Fall der Lamé'schen Differentialgleichung, Math. Ann. 40 (1892), 125-129.
  • 125. Q. Kong and A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Differential Equations 126 (1996), no. 2, 389–407. MR 1383983, https://doi.org/10.1006/jdeq.1996.0056
  • 126. Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differential Equations 131 (1996), no. 1, 1–19. MR 1415044, https://doi.org/10.1006/jdeq.1996.0154
  • 127. B. G. Konopel′chenko, Elementary Bäcklund transformations, nonlinear superposition principle and solutions of the integrable equations, Phys. Lett. A 87 (1981/82), no. 9, 445–448. MR 645876, https://doi.org/10.1016/0375-9601(82)90754-X
  • 128. D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 (1895), 422-443.
  • 129. N. A. Kostov and V. Z. Ènol′skiĭ, Spectral characteristics of elliptic solitons, Mat. Zametki 53 (1993), no. 3, 62–71 (Russian); English transl., Math. Notes 53 (1993), no. 3-4, 287–293. MR 1220185, https://doi.org/10.1007/BF01207715
  • 130. S. Kotani, Generalized Floquet theory for stationary Schrödinger operators in one dimension, Chaos, Solitons and Fractals 8 (1997), 1817-1854. CMP 98:03
  • 131. M. Krause, Theorie der doppeltperiodischen Funktionen einer veränderlichen Grösse, Vol. 1, 1895, Vol. 2, 1897, Teubner, Leipzig.
  • 132. I. M. Krichever, Integration of nonlinear equations by the methods of algebraic geometry, Funct. Anal. Appl. 11 (1977), 12-26.
  • 133. -, Methods of algebraic geometry in the theory of non-linear equations, Russ. Math. Surv. 32:6 (1977), 185-213.
  • 134. -, Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of $N$ particles on a line, Funct. Anal. Appl. 12 (1978), 59-61.
  • 135. Igor Moiseevich Krichever, Elliptic solutions of the Kadomcev-Petviašvili equations, and integrable systems of particles, Funktsional. Anal. i Prilozhen. 14 (1980), no. 4, 45–54, 95 (Russian). MR 595728
  • 136. Igor Moiseevich Krichever, Nonlinear equations and elliptic curves, Current problems in mathematics, Vol. 23, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 79–136 (Russian). MR 734314
  • 137. -, Rational solutions of the Zakharov-Shabat equations and completely integrable systems of $N$ particles on a line, J. Sov. Math. 21, 335-345 (1983).
  • 138. Igor Moiseevich Krichever, Elliptic solutions of nonlinear integrable equations and related topics, Acta Appl. Math. 36 (1994), no. 1-2, 7–25. MR 1303853, https://doi.org/10.1007/BF01001540
  • 139. -, Elliptic solutions to difference non-linear equations and nested Bethe ansatz equations, preprint, solv-int/9804016.
  • 140. Igor Moiseevich Krichever, O. Babelon, E. Billey, and M. Talon, Spin generalization of the Calogero-Moser system and the matrix KP equation, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, vol. 170, Amer. Math. Soc., Providence, RI, 1995, pp. 83–119. MR 1355552, https://doi.org/10.1090/trans2/170/05
  • 141. I. M. Krichever and D. H. Phong, On the integrable geometry of soliton equations and 𝑁=2 supersymmetric gauge theories, J. Differential Geom. 45 (1997), no. 2, 349–389. MR 1449977
  • 142. I. Krichever, P. Wiegmann, and A. Zabrodin, Elliptic solutions to difference non-linear equations and related many-body problems, Commun. Math. Phys. 193 (1998), 373-396. CMP 98:13
  • 143. Igor Moiseevich Krichever and A. Zabrodin, Spin generalization of the Ruijsenaars-Schneider model, the nonabelian two-dimensionalized Toda lattice, and representations of the Sklyanin algebra, Uspekhi Mat. Nauk 50 (1995), no. 6(306), 3–56 (Russian); English transl., Russian Math. Surveys 50 (1995), no. 6, 1101–1150. MR 1379076, https://doi.org/10.1070/RM1995v050n06ABEH002632
  • 144. V. B. Kuznetsov, F. W. Nijhoff, and E. K. Sklyanin, Separation of variables for the Ruijsenaars system, Commun. Math. Phys. 189 (1997), 855-877. CMP 98:04
  • 145. Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 0235310, https://doi.org/10.1002/cpa.3160210503
  • 146. -, Outline of a theory of the KdV equation, Recent Mathematical Methods in Nonlinear Wave Propagation (ed. by T. Ruggeri), Lecture Notes in Mathematics 1640 (1996), Springer, Berlin, 70-102. CMP 98:07
  • 147. J. E. Lee and M. P. Tsui, The geometry and completeness of the two-phase solutions of the nonlinear Schrödinger equation, Nonlinear Evolution Equations and Dynamical Systems (ed. by S. Carillo and O. Ragnisco), Springer, Berlin, 1990, 94-97. CMP 91:02
  • 148. A. M. Levin and M. A. Olshanetsky, Hierarchies of isomonodromic deformations and Hitchin systems, preprint, hep-th/9709207.
  • 149. A. Liapounoff, Sur une équation transcendante et les équations différentielles linéaires du second ordre à coefficients périodiques, Comptes Rendus 128 (1899), 1085-1088.
  • 150. Wilhelm Magnus and Stanley Winkler, Hill’s equation, Dover Publications, Inc., New York, 1979. Corrected reprint of the 1966 edition. MR 559928
  • 151. A. V. Marshakov, On integrable systems and supersymmetric gauge theories, Teoret. Mat. Fiz. 112 (1997), no. 1, 3–46 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 112 (1997), no. 1, 791–826 (1998). MR 1478898, https://doi.org/10.1007/BF02634097
  • 152. Vladimir A. Marchenko, Sturm-Liouville operators and applications, Operator Theory: Advances and Applications, vol. 22, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR 897106
  • 153. A. I. Markushevich, Theory of functions of a complex variable. Vol. I, II, III, Second English edition, Chelsea Publishing Co., New York, 1977. Translated and edited by Richard A. Silverman. MR 0444912
  • 154. V. B. Matveev, Some comments on the rational solutions of the Zakharov-Schabat equations, Lett. Math. Phys. 3 (1979), no. 6, 503–512. MR 555334, https://doi.org/10.1007/BF00401932
  • 155. V. B. Matveev and A. O. Smirnov, Symmetric reductions of the Riemann $\theta$-function and some of their applications to the Schrödinger and Boussinesq equation, Amer. Math. Soc. Transl. (2) 157 (1993), 227-237. CMP 94:05
  • 156. David McGarvey, Operators commuting with translation by one. I. Representation theorems, J. Math. Anal. Appl. 4 (1962), 366–410. MR 0150599, https://doi.org/10.1016/0022-247X(62)90038-0
  • 157. D. C. McGarvey, Operators commuting with translation by one. II. Differential operators with periodic coefficients in 𝐿_{𝑝}(-∞,∞), J. Math. Anal. Appl. 11 (1965), 564–596. MR 0212612, https://doi.org/10.1016/0022-247X(65)90105-8
    D. C. McGarvey, Operators commuting with translation by one. III. Perturbation results for periodic differential operators, J. Math. Anal. Appl. 12 (1965), 187–234. MR 0212613, https://doi.org/10.1016/0022-247X(65)90033-8
  • 158. D. C. McGarvey, Operators commuting with translation by one. II. Differential operators with periodic coefficients in 𝐿_{𝑝}(-∞,∞), J. Math. Anal. Appl. 11 (1965), 564–596. MR 0212612, https://doi.org/10.1016/0022-247X(65)90105-8
    D. C. McGarvey, Operators commuting with translation by one. III. Perturbation results for periodic differential operators, J. Math. Anal. Appl. 12 (1965), 187–234. MR 0212613, https://doi.org/10.1016/0022-247X(65)90033-8
  • 159. H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), no. 3, 217–274. MR 0397076, https://doi.org/10.1007/BF01425567
  • 160. H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226. MR 0427731, https://doi.org/10.1002/cpa.3160290203
  • 161. J. Mertsching, Quasiperiodic solutions of the nonlinear Schrödinger equation, Fortschr. Phys. 35 (1987), no. 7, 519–536. MR 905397, https://doi.org/10.1002/prop.2190350704
  • 162. G. Mittag-Leffler, Sur les équations différentielles linéaires à coefficients doublement périodiques, C. R. Acad. Sci. Paris, 90, 299-300 (1880).
  • 163. Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202–1204. MR 0252825, https://doi.org/10.1063/1.1664700
    Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Mathematical Phys. 9 (1968), 1204–1209. MR 0252826, https://doi.org/10.1063/1.1664701
  • 164. Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202–1204. MR 0252825, https://doi.org/10.1063/1.1664700
    Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Mathematical Phys. 9 (1968), 1204–1209. MR 0252826, https://doi.org/10.1063/1.1664701
  • 165. J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Advances in Math. 16 (1975), 197–220. MR 0375869, https://doi.org/10.1016/0001-8708(75)90151-6
  • 166. J. Moser, Integrable Hamiltonian systems and spectral theory, Lezioni Fermiane. [Fermi Lectures], Scuola Normale Superiore, Pisa, 1983. MR 854865
  • 167. D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg deVries equation and related nonlinear equation, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 115–153. MR 578857
  • 168. S. P. Novikov, A periodic problem for the Korteweg-de Vries equation. I, Funkcional. Anal. i Priložen. 8 (1974), no. 3, 54–66 (Russian). MR 0382878
  • 169. S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
  • 170. M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite-dimensional systems related to Lie algebras, Phys. Rep. 71 (1981), no. 5, 313–400. MR 615898, https://doi.org/10.1016/0370-1573(81)90023-5
  • 171. A. R. Osborne and G. Boffetta, A summable multiscale expansion for the KdV equation, Nonlinear Evolution Equations: Integrability and Spectral Methods (ed. by A. Degasperis, A. P. Fordy, and M. Lakshmanan), Manchester Univ. Press, Manchester, 1990, 559-569.
  • 172. Richard S. Palais, The symmetries of solitons, Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 4, 339–403. MR 1462745, https://doi.org/10.1090/S0273-0979-97-00732-5
  • 173. L. A. Pastur and V. A. Tkachenko, On the spectral theory of Schrödinger operators with periodic complex-valued potentials, Funktsional. Anal. i Prilozhen. 22 (1988), no. 2, 85–86 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 2, 156–158. MR 947620, https://doi.org/10.1007/BF01077617
  • 174. L. A. Pastur and V. A. Tkachenko, An inverse problem for a class of one-dimensional Schrödinger operators with complex periodic potential, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 6, 1252–1269 (Russian); English transl., Math. USSR-Izv. 37 (1991), no. 3, 611–629. MR 1098626
  • 175. L. A. Pastur and V. A. Tkachenko, On the geometry of the spectrum of the one-dimensional Schrödinger operator with periodic complex-valued potential, Mat. Zametki 50 (1991), no. 4, 88–95, 159 (Russian); English transl., Math. Notes 50 (1991), no. 3-4, 1045–1050 (1992). MR 1162916, https://doi.org/10.1007/BF01137736
  • 176. M. V. Pavlov, The nonlinear Schrödinger equation and the Bogolyubov-Whitham averaging method, Teoret. Mat. Fiz. 71 (1987), no. 3, 351–356 (Russian, with English summary). MR 910272
  • 177. R. Pego, Origin of the KdV equation, Notices Amer. Math. Soc. 45 (1998), 358.
  • 178. Dmitry Pelinovsky, Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution, J. Math. Phys. 35 (1994), no. 11, 5820–5830. MR 1299920, https://doi.org/10.1063/1.530711
  • 179. E. Picard, Sur une généralisation des fonctions périodiques et sur certaines équations différentielles linéaires, C. R. Acad. Sci. Paris 89 (1879), 140-144.
  • 180. -, Sur une classe d'équations différentielles linéaires, C. R. Acad. Sci. Paris 90 (1880), 128-131.
  • 181. -, Sur les équations différentielles linéaires à coefficients doublement périodiques, J. reine angew. Math. 90 (1881), 281-302.
  • 182. -, Leçons sur Quelques Équations Fonctionnelles, Gauthier Villars, Paris, 1928.
  • 183. Emma Previato, The Calogero-Moser-Krichever system and elliptic Boussinesq solitons, Hamiltonian systems, transformation groups and spectral transform methods (Montreal, PQ, 1989) Univ. Montréal, Montreal, QC, 1990, pp. 57–67. MR 1110372
  • 184. Emma Previato, Monodromy of Boussinesq elliptic operators, Acta Appl. Math. 36 (1994), no. 1-2, 49–55. MR 1303855, https://doi.org/10.1007/BF01001542
  • 185. Emma Previato, Seventy years of spectral curves: 1923–1993, Integrable systems and quantum groups (Montecatini Terme, 1993) Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp. 419–481. MR 1397276, https://doi.org/10.1007/BFb0094795
  • 186. Emma Previato and Jean-Louis Verdier, Boussinesq elliptic solitons: the cyclic case, Proceedings of the Indo-French Conference on Geometry (Bombay, 1989) Hindustan Book Agency, Delhi, 1993, pp. 173–185. MR 1274502
  • 187. F. S. Rofe-Beketov, On the spectrum of non-selfadjoint differential operators with periodic coefficients, Dokl. Akad. Nauk SSSR 152 (1963), 1312–1315 (Russian). MR 0157033
  • 188. S. N. M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Comm. Math. Phys. 110 (1987), no. 2, 191–213. MR 887995
  • 189. Jean-Jacques Sansuc and Vadim Tkachenko, Spectral properties of non-selfadjoint Hill’s operators with smooth potentials, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 371–385. MR 1385692
  • 190. Jean-Jacques Sansuc and Vadim Tkachenko, Spectral parametrization of non-selfadjoint Hill’s operators, J. Differential Equations 125 (1996), no. 2, 366–384. MR 1378761, https://doi.org/10.1006/jdeq.1996.0035
  • 191. J.-J. Sansuc and V. Tkachenko, Characterization of the periodic and anti-periodic spectra of nonselfadjoint Hill’s operators, New results in operator theory and its applications, Oper. Theory Adv. Appl., vol. 98, Birkhäuser, Basel, 1997, pp. 216–224. MR 1478477
  • 192. J. Schur, Über vertauschbare lineare Differentialausdrücke, Sitzungsber. der Berliner Math. Gesell. 4 (1905), 2-8.
  • 193. Graeme Segal and George Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5–65. MR 783348
  • 194. Takahiro Shiota, Calogero-Moser hierarchy and KP hierarchy, J. Math. Phys. 35 (1994), no. 11, 5844–5849. MR 1299922, https://doi.org/10.1063/1.530713
  • 195. A. O. Smirnov, Elliptic solutions of the Korteweg-de Vries equation, Mat. Zametki 45 (1989), no. 6, 66–73, 111 (Russian); English transl., Math. Notes 45 (1989), no. 5-6, 476–481. MR 1019038, https://doi.org/10.1007/BF01158237
  • 196. A. O. Smirnov, Real elliptic solutions of the sine-Gordon equation, Mat. Sb. 181 (1990), no. 6, 804–812 (Russian); English transl., Math. USSR-Sb. 70 (1991), no. 1, 231–240. MR 1072298
  • 197. A. O. Smirnov, Finite-gap elliptic solutions of the KdV equation, Acta Appl. Math. 36 (1994), no. 1-2, 125–166. MR 1303859, https://doi.org/10.1007/BF01001546
  • 198. A. O. Smirnov, Solutions of the KdV equation that are elliptic in 𝑡, Teoret. Mat. Fiz. 100 (1994), no. 2, 183–198 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 100 (1994), no. 2, 937–947 (1995). MR 1311192, https://doi.org/10.1007/BF01016756
  • 199. A. O. Smirnov, The Dirac operator with elliptic potential, Mat. Sb. 186 (1995), no. 8, 133–141 (Russian, with Russian summary); English transl., Sb. Math. 186 (1995), no. 8, 1213–1221. MR 1357361, https://doi.org/10.1070/SM1995v186n08ABEH000064
  • 200. A. O. Smirnov, Elliptic solutions of the nonlinear Schrödinger equation and a modified Korteweg-de Vries equation, Mat. Sb. 185 (1994), no. 8, 103–114 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 2, 461–470. MR 1302625, https://doi.org/10.1070/SM1995v082n02ABEH003575
  • 201. -, On a class of elliptic solutions of the Boussinesq equations, Theoret. Math. Phys. 109 (1996), 1515-1522. CMP 98:01
  • 202. A. O. Smirnov, Solutions of the nonlinear Schrödinger equation that are elliptic in 𝑡, Teoret. Mat. Fiz. 107 (1996), no. 2, 188–200 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 107 (1996), no. 2, 568–578. MR 1406550, https://doi.org/10.1007/BF02071370
  • 203. A. O. Smirnov, On a class of elliptic potentials of the Dirac operator, Mat. Sb. 188 (1997), no. 1, 109–128 (Russian, with Russian summary); English transl., Sb. Math. 188 (1997), no. 1, 115–135. MR 1453254, https://doi.org/10.1070/SM1997v188n01ABEH000190
  • 204. A. O. Smirnov, Real elliptic solutions of equations related to the sine-Gordon equation, Algebra i Analiz 8 (1996), no. 3, 196–211 (Russian); English transl., St. Petersburg Math. J. 8 (1997), no. 3, 513–524. MR 1402294
  • 205. -, 3-elliptic solutions of the sine-Gordon equation, Math. Notes 62 (1997), 368-376. CMP 98:12
  • 206. V. V. Sokolov, Examples of commutative rings of differential operators, Funkcional. Anal. i Priložen. 12 (1978), no. 1, 82–83 (Russian). MR 0500295
  • 207. I. A. Taĭmanov, Elliptic solutions of nonlinear equations, Teoret. Mat. Fiz. 84 (1990), no. 1, 38–45 (Russian, with English summary); English transl., Theoret. and Math. Phys. 84 (1990), no. 1, 700–706 (1991). MR 1070345, https://doi.org/10.1007/BF01017194
  • 208. I. A. Taĭmanov, On the two-gap elliptic potentials, Acta Appl. Math. 36 (1994), no. 1-2, 119–124. MR 1303858, https://doi.org/10.1007/BF01001545
  • 209. C.-L. Terng and K. Uhlenbeck, Poisson actions and scattering theory for integrable systems, preprint, dg-ga/9707004.
  • 210. V. A. Tkachenko, Spectral analysis of the one-dimensional Schrödinger operator with periodic complex-valued potential, Sov. Math. Dokl. 5 (1964), 413-415.
  • 211. V. A. Tkachenko, Spectral analysis of the nonselfadjoint Hill operator, Dokl. Akad. Nauk SSSR 322 (1992), no. 2, 248–252 (Russian); English transl., Soviet Math. Dokl. 45 (1992), no. 1, 78–82. MR 1158959
  • 212. V. A. Tkachenko, Discriminants and generic spectra of nonselfadjoint Hill’s operators, Spectral operator theory and related topics, Adv. Soviet Math., vol. 19, Amer. Math. Soc., Providence, RI, 1994, pp. 41–71. MR 1298442
  • 213. -, Spectral properties of periodic Dirac operator with skew-symmetric potential matrix, preprint, 1994.
  • 214. V. Tkachenko, Spectra of non-selfadjoint Hill’s operators and a class of Riemann surfaces, Ann. of Math. (2) 143 (1996), no. 2, 181–231. MR 1381985, https://doi.org/10.2307/2118642
  • 215. -, Non-selfadjoint periodic Dirac operators, preprint, 1997.
  • 216. -, Non-selfadjoint periodic Dirac operators with finite-band spectrum, preprint, 1998.
  • 217. Armando Treibich, Tangential polynomials and elliptic solitons, Duke Math. J. 59 (1989), no. 3, 611–627. MR 1046741, https://doi.org/10.1215/S0012-7094-89-05928-0
  • 218. Armando Treibich, Compactified Jacobians of tangential covers, Integrable systems (Luminy, 1991) Progr. Math., vol. 115, Birkhäuser Boston, Boston, MA, 1993, pp. 39–59. MR 1279816
  • 219. Armando Treibich, Revêtements tangentiels et condition de Brill-Noether, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 8, 815–817 (French, with English and French summaries). MR 1218267
  • 220. Armando Treibich, New elliptic potentials, Acta Appl. Math. 36 (1994), no. 1-2, 27–48. MR 1303854, https://doi.org/10.1007/BF01001541
  • 221. -, Matrix elliptic solitons, Duke Math. J. 90 (1997), 523-547. CMP 98:04
  • 222. A. Treibich and J.-L. Verdier, Solitons elliptiques, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 437–480 (French). With an appendix by J. Oesterlé. MR 1106919, https://doi.org/10.1007/978-0-8176-4576-2_11
  • 223. Armando Treibich and Jean-Louis Verdier, Revêtements tangentiels et sommes de 4 nombres triangulaires, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 1, 51–54 (French, with English summary). MR 1062928
  • 224. Armando Treibich and Jean-Louis Verdier, Revêtements exceptionnels et sommes de 4 nombres triangulaires, Duke Math. J. 68 (1992), no. 2, 217–236 (French). MR 1191559, https://doi.org/10.1215/S0012-7094-92-06809-8
  • 225. A. Treibich and J.-L. Verdier, Variétés de Kritchever des solitons elliptiques de KP, Proceedings of the Indo-French Conference on Geometry (Bombay, 1989) Hindustan Book Agency, Delhi, 1993, pp. 187–232 (French). MR 1274503
  • 226. -, Au-delà des potentiels et rêvetements tangentiels hyperelliptiques exceptionnels, C. R. Acad. Sci. Paris 325 (1997), 1101-1106. CMP 98:10
  • 227. A. V. Turbiner, Lamé equation, 𝑠𝑙(2) algebra and isospectral deformations, J. Phys. A 22 (1989), no. 1, L1–L3. MR 975165
  • 228. K. L. Vaninsky, Trace formula for a system of particles with elliptic potential, preprint, solv-int/9707002.
  • 229. J.-L. Verdier, New elliptic solitons, Algebraic analysis, Vol. II, Academic Press, Boston, MA, 1988, pp. 901–910. MR 992502
  • 230. G. Wallenberg, Über die Vertauschbarkeit homogener linearer Differentialausdrücke, Arch. Math. Phys. 4 (1903), 252-268.
  • 231. R. S. Ward, The Nahm equations, finite-gap potentials and Lamé functions, J. Phys. A 20 (1987), no. 10, 2679–2683. MR 898971
  • 232. R. Weikard, On Hill's equation with a singular complex-valued potential, Proc. London Math. Soc. 76 (1998), 603-633. CMP 98:11
  • 233. -, On rational and periodic solutions of stationary KdV equations, preprint 1997.
  • 234. E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469
  • 235. George Wilson, Commuting flows and conservation laws for Lax equations, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 1, 131–143. MR 530817, https://doi.org/10.1017/S0305004100000700
  • 236. George Wilson, Algebraic curves and soliton equations, Geometry today (Rome, 1984) Progr. Math., vol. 60, Birkhäuser Boston, Boston, MA, 1985, pp. 303–329. MR 895160
  • 237. A. Wintner, Stability and spectrum in the wave mechanics of lattices, Phys. Rev. 72 (1947), 81-82. MR 8:615f
  • 238. -, On the location of continuous spectra, Am. J. Math. 70 (1948), 22-30. MR 9:435k
  • 239. V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients. 1, 2, Halsted Press [John Wiley & Sons] New York-Toronto, Ont.,; Israel Program for Scientific Translations, Jerusalem-London, 1975. Translated from Russian by D. Louvish. MR 0364740
  • 240. N. J. Zabusky and M. D. Kruskal, Interaction of ``solitons'' in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240-243.
  • 241. V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation: A completely integrable Hamiltonian system, Funct. Anal. Appl. 5 (1971), 280-287.
  • 242. V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 34L40, 35Q53, 35Q55, 34B30, 34L05, 35Q51

Retrieve articles in all journals with MSC (1991): 34L40, 35Q53, 35Q55, 34B30, 34L05, 35Q51


Additional Information

Fritz Gesztesy
Affiliation: Department of Mathematics, University of Missouri, Columbia, MO 65211
Email: fritz@math.missouri.edu

Rudi Weikard
Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170
Email: rudi@math.uab.edu

DOI: https://doi.org/10.1090/S0273-0979-98-00765-4
Received by editor(s): May 20, 1998
Received by editor(s) in revised form: August 10, 1998
Additional Notes: Research supported in part by the US National Science Foundation under Grant Nos. DMS-9401816 and DMS-9623121.
Article copyright: © Copyright 1998 by the authors