Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

   
 
 

 

Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - an analytic approach


Authors: Fritz Gesztesy and Rudi Weikard
Journal: Bull. Amer. Math. Soc. 35 (1998), 271-317
MSC (1991): Primary 34L40, 35Q53, 35Q55; Secondary 34B30, 34L05, 35Q51
DOI: https://doi.org/10.1090/S0273-0979-98-00765-4
MathSciNet review: 1638298
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide an overview of elliptic algebro-geometric solutions of the KdV and AKNS hierarchies, with special emphasis on Floquet theoretic and spectral theoretic methods. Our treatment includes an effective characterization of all stationary elliptic KdV and AKNS solutions based on a theory developed by Hermite and Picard.


References [Enhancements On Off] (What's this?)

  • 1. M. J. Ablowitz and P.A.Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991. MR 93g:35108
  • 2. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), 249-315. MR 56:9108
  • 3. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972. MR 94b:00012
  • 4. M. Adler and J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Commun. Math. Phys. 61 (1978), 1-30. MR 58:18554
  • 5. H. Airault, H. P. McKean, and J. Moser, Rational and elliptic solutions of the Korteweg-deVries equation and a related many-body problem, Commun. Pure Appl. Math. 30 (1977), 95-148. MR 58:31214
  • 6. N. I. Akhiezer, On the spectral theory of Lamé's equation, Istor.-Mat. Issled 23 (1978), 77-86, 357. (Russian). MR 82h:34029
  • 7. -, Elements of the Theory of Elliptic Functions, Amer. Math. Soc., Providence, RI, 1990. MR 91k:33016
  • 8. G. L. Alfimov, A. R. Its, and N. E. Kulagin, Modulation instability of solutions of the nonlinear Schrödinger equation, Theoret. Math. Phys. 84 (1990), 787-793. MR 91h:35294
  • 9. P. É. Appell, Sur la transformation des équations différentielles linéaires, Comptes Rendus 91 (1880), 211-214.
  • 10. F. M. Arscott, Periodic Differential Equations, MacMillan, New York, 1964. MR 30:4006
  • 11. N. Asano and Y. Kato, Algebraic and Spectral Methods for Nonlinear Wave Equations, Longman, New York, 1990. MR 92d:35001
  • 12. O. Babelon and M. Talon, The symplectic structure of the spin Calogero model, Phys. Lett. A 236 (1997), 462-468. CMP 98:06
  • 13. M. V. Babich, A. I. Bobenko, and V. B. Matveev, Reductions of Riemann theta-functions of genus $g$ to theta-functions of lower genus, and symmetries of algebraic curves, Sov. Math. Dokl. 28 (1983), 304-308. MR 85f:14046
  • 14. -, Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves , Math. USSR Izv. 26 (1986), 479-496. MR 87d:58069
  • 15. H. F. Baker, Note on the foregoing paper, ``Commutative ordinary differential operators,'' by J. L. Burchnall and J. W. Chaundy, Proc. Roy. Soc. London A 118 (1928), 584-593.
  • 16. E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994.
  • 17. E. D. Belokolos, A. I. Bobenko, V. B. Matveev, and V. Z. Enol'skii, Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations, Russian Math. Surv. 41:2 (1986), 1-49. MR 87i:58078
  • 18. E. D. Belokolos and V. Z. Enol'skii, Verdier elliptic solitons and the Weierstrass theory of reduction, Funct. Anal. Appl. 23 (1989), 46-47. MR 90h:14059
  • 19. -, Isospectral deformations of elliptic potentials, Russ. Math. Surv. 44:5 (1989), 191-193. MR 91c:58046
  • 20. -, Reduction of theta functions and elliptic finite-gap potentials, Acta Appl. Math. 36 (1994), 87-117. MR 95j:35205
  • 21. D. Bennequin, Hommage à Jean-Louis Verdier: au jardin des systèmes intégrables , in Integrable Systems: The Verdier Memorial Conference (ed. by O. Babelon, P. Cartier, and Y. Kosmann-Schwarzbach), Birkhäuser, Boston, 1993, 1-36. MR 95g:01020
  • 22. G. D. Birkhoff, Existence and oscillation theorem for a certain boundary value problem, Trans. Amer. Math. Soc. 10 (1909), 259-270.
  • 23. B. Birnir, Complex Hill's equation and the complex periodic Korteweg-de Vries equations , Commun. Pure Appl. Math. 39 (1986), 1-49. MR 87f:58061
  • 24. -, Singularities of the complex Korteweg-de Vries flows, Commun. Pure Appl. Math. 39 (1986), 283-305. MR 87k:58109
  • 25. -, An example of blow-up, for the complex KdV equation and existence beyond blow-up, SIAM J. Appl. Math. 47 (1987), 710-725. MR 88i:35139
  • 26. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78 (1946), 1-96. MR 7:382d
  • 27. V. M. Buchstaber, V. Z. Enol'skii, and D. V. Leykin, Hyperelliptic Kleinian functions and applications, in Solitons, Geometry, and Topology: On the Crossroad, V. M. Buchstaber and S. P. Novikov Eds.), Amer. Math. Soc. Transl. (2), 179 (1997), 1-33. MR 98b:14029
  • 28. -, Kleinian functions, hyperelliptic Jacobians and applications, to appear in Revs. in Mathematics and Mathematical Physics, Vol. 10, S. Novikov and I. Krichever (eds.), Gordon & Breach, pp. 1-115.
  • 29. J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. London Math. Soc. Ser. 2 21 (1923), 420-440.
  • 30. -, Commutative ordinary differential operators, Proc. Roy. Soc. London A 118 (1928), 557-583.
  • 31. -, Commutative ordinary differential operators. II.-The identity $P^n=Q^m,$ Proc. Roy. Soc. London A134 (1932), 471-485.
  • 32. H. Burkhardt, Elliptische Functionen, 2nd ed., Verlag von Veit, Leipzig, 1906.
  • 33. M. Buys and A. Finkel, The inverse periodic problem for Hill's equation with a finite-gap potential, J. Diff. Eqs. 55 (1984), 257-275. MR 86a:34052
  • 34. F. Calogero, Exactly solvable one-dimensional many-body problems, Lett. Nuovo Cim. 13 (1975), 411-416. MR 52:9728
  • 35. -, Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related ``solvable'' many-body problems, Nuovo Cim. 43B (1978), 177-241. MR 80a:58023
  • 36. R. C. Carlson and K. R. Goodearl, Commutants of ordinary differential operators, J. Diff. Eqs. 35 (1980), 339-365. MR 81g:12025
  • 37. K. Chandrasekharan, Elliptic Functions, Springer, Berlin, 1985. MR 87e:11058
  • 38. D. V. Choodnovsky and G. V. Choodnovsky, Pole expansions of nonlinear partial differential equations, Nuovo Cim. 40B (1977), 339-353. MR 56:6722
  • 39. P. L. Christiansen, J. C. Eilbeck, V. Z. Enol'skii, and N. A. Kostov, Quasi-periodic solutions of the coupled nonlinear Schrödinger equations, Proc. Roy. Soc. London A 451 (1995), 685-700. MR 96k:34081
  • 40. D. V. Chudnovsky, Meromorphic solutions of nonlinear partial differential equations and many-particle completely integrable systems, J. Math. Phys. 20 (1979), 2416-2422. MR 81h:35043
  • 41. D. V. Chudnovsky and G. V. Chudnovsky, Appendix I: Travaux de J. Drach (1919), Classical and Quantum Models and Arithmetic Problems (ed. by D. V. Chudnovsky and G. V. Chudnovsky), Marcel Dekker, New York, 1984, 445-453. MR 86i:34011
  • 42. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, 1985. MR 16:1022b
  • 43. E. Colombo, G. P. Pirola, and E. Previato, Density of elliptic solitons, J. reine angew. Math. 451 (1994), 161-169. MR 95e:58079
  • 44. L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 1991. MR 93d:58067
  • 45. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London, 1988. MR 84j:35142
  • 46. R. Donagi and E. Markman, Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, in Integrable Systems and Quantum Groups (ed. by R. Donagi, B. Dubrovin, E. Frenkel, and E. Previato), Lecture Notes in Mathematics 1620, Springer, Berlin, 1996, 1-119. MR 97h:14017
  • 47. R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nuclear Phys. B 460 (1996), 299-334. MR 97a:58076
  • 48. J. Drach, Sur les groupes complexes de rationalité et sur l'intégration par quadratures, C. R. Acad. Sci. Paris 167 (1918), 743-746.
  • 49. -, Détermination des cas de réduction de'léquation différentielle $d^2 y/dx^2=[\phi(x)+h]y$, C. R. Acad. Sci. Paris 168 (1919), 47-50.
  • 50. -, Sur l'intégration par quadratures de'léquation $d^2 y/dx^2=[\phi(x)+h]y$ , C. R. Acad. Sci. Paris 168 (1919), 337-340.
  • 51. P. G. Drazin and R. S. Johnson, Solitons: an introduction, Cambridge University Press, Cambridge, 1989. MR 90j:35166
  • 52. B. A. Dubrovin, Periodic problems for the Korteweg-de Vries equation in the class of finite-gap potentials, Funct. Anal. Appl. 9, (1975), 215-223. MR 58:6480
  • 53. -, Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties, Funct. Anal. Appl. 11 (1977), 265-277. MR 58:31219
  • 54. -, Theta functions and non-linear equations, Russ. Math. Surv. 36:2 (1981), 11-92.
  • 55. -, Matrix finite-zones operators, Revs. Sci. Technology 23 (1983), 20-50. MR 86a:58041
  • 56. B. A. Dubrovin and S. P. Novikov, Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation, Sov. Phys.-JETP 40 (1975), 1058-1063. MR 52:3759
  • 57. M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh and London, 1973.
  • 58. J. C. Eilbeck and V. Z. Enol'skii, Elliptic Baker-Akhiezer functions and an application to an integrable dynamical system, J. Math. Phys. 35 (1994), 1192-1201. MR 94m:58104
  • 59. -, Elliptic solutions and blow-up in an integrable Hénon-Heiles system, Proc. Roy. Soc. Edinburgh 124A (1994), 1151-1164. MR 95j:58067
  • 60. V. Z. Enol'skii, On the solutions in elliptic functions of integrable nonlinear equations, Phys. Lett. 96A (1983), 327-330. MR 85e:58064
  • 61. -, On the two-gap Lamé potentials and elliptic solutions of the Kovalevskaja problem connected with them, Phys. Lett. 100A (1984), 463-466. MR 85k:35200
  • 62. -, On solutions in elliptic functions of integrable nonlinear equations associated with two-zone Lamé potentials, Soc. Math. Dokl. 30 (1984), 394-397. MR 86c:35134
  • 63. V. Z. Enol'skii and J. C. Eilbeck, On the two-gap locus for the elliptic Calogero-Moser model, J. Phys. A 28 (1995), 1069-1088. MR 96a:58149
  • 64. V. Z. Enol'skii and N. A. Kostov, On the geometry of elliptic solitons, Acta Appl. Math. 36 (1994), 57-86. MR 95k:14066
  • 65. A. Erdélyi, On Lamé functions, Phil. Mag. (7) 31 (1941), 123-1130. MR 2:285a
  • 66. E. Fermi, J. Pasta, and S. M. Ulam, Studies in nonlinear problems, Technical Report LA-1940, Los Alamos Sci. Lab. Also in: Collected Papers of Enrico Fermi, Vol II, 978-988, University of Chicago Press, 1965.
  • 67. A. Finkel, E. Isaacson and E. Trubowitz, An explicit solution of the inverse periodic problem for Hill's equation, SIAM J. Math. Anal. 18 (1987), 46-53. MR 88d:34037
  • 68. H. Flaschka, On the inverse problem for Hill's operator, Arch. Rat. Mech. Anal. 59 (1975), 293-309. MR 52:8550
  • 69. G. Floquet, Sur la théorie des équations différentielles linéaires, Ann. Sci. École Norm. Sup. 8 (1879), suppl., 1-132.
  • 70. -, Sur les équations différentielles linéaires à coefficients périodiques, C. R. Acad. Sci. Paris 91 (1880), 880-882.
  • 71. -, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. École Norm. Sup. 12 (1883), 47-88.
  • 72. -, Sur les équations différentielles linéaires à coefficients doublement périodiques, C. R. Acad. Sci. Paris 98 (1884), 38-39, 82-85.
  • 73. -, Sur les équations différentielles linéaires à coefficients doublement périodiques, Ann. Sci. Ecole Norm. Sup. 1 (1884), 181-238.
  • 74. -, Addition a un mémorie sur les équations différentielles linéaires, Ann. Sci. Ecole Norm. Sup. 1 (1884), 405-408.
  • 75. A. R. Forsyth, Theory of Differential Equations, Part III, Vol. 4, Dover, New York, 1959. MR 23:A1079
  • 76. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095-1097.
  • 77. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Korteweg-de Vries equation and generalizations. VI. Methods for exact solution, Commun. Pure Appl. Math. 27 (1974), 97-133. MR 49:898
  • 78. C. S. Gardner and G. K. Morikawa, Similarity in the asymptotic behavior of collision free hydromagnetic waves and water waves, Research Report NYO-9082, Courant Institute, 1960.
  • 79. M. G. Gasymov, Spectral analysis of a class of second-order non-self-adjoint differential operators, Funct. Anal. Appl. 14 (1980), 11-15. MR 81c:47048
  • 80. M. G. Gasymov, Spectral analysis of a class of ordinary differential operators with periodic coefficients, Sov. Math. Dokl. 21 (1980), 718-721. MR 81h:34023
  • 81. L. Gatto and S. Greco, Algebraic curves and differential equations: an introduction, The Curves Seminar at Queen's, Vol. VIII (ed. by A. V. Geramita), Queen's Papers Pure Appl. Math. 88, Queen's Univ., Kingston, Ontario, Canada, 1991, B1-B69. MR 93d:58069
  • 82. I. M. Gel'fand and L. A. Dikii, Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Russ. Math. Surv. 30:5, (1975) 77-113. MR 58:22746
  • 83. -, Fractional powers of operators and Hamiltonian systems, Funct. Anal. Appl. 10 (1976), 259-272. MR 55:6484
  • 84. -, Integrable nonlinear equations and the Liouville theorem , Funct. Anal. Appl. 13 (1979), 6-15. MR 80i:58027
  • 85. F. Gesztesy and H. Holden, Darboux-type transformations and hyperelliptic curves, in preparation.
  • 86. -, Hierarchies of Soliton Equations and their Algebro-Geometric Solutions, monograph in preparation.
  • 87. F. Gesztesy and R. Ratneseelan, An alternative approach to algebro-geometric solutions of the AKNS hierarchy, Rev. Math. Phys. 10 (1998), 345-391. CMP 98:14
  • 88. F. Gesztesy and B. Simon, The xi function, Acta Math. 176 (1996), 49-71. MR 97e:47078
  • 89. F. Gesztesy, B. Simon, and G. Teschl, Spectral deformations of one-dimensional Schrödinger operators, J. d'Anal. Math. 70 (1996), 267-324. CMP 97:11
  • 90. F. Gesztesy and W. Sticka, On a theorem of Picard, Proc. Amer. Math. Soc. 126 (1998), 1089-1099. CMP 98:06
  • 91. F. Gesztesy and R. Weikard, Spectral deformations and soliton equations, Differential Equations with Applications to Mathematical Physics (ed. by W. F. Ames, E. M. Harrell II, and J. V. Herod), Academic Press, Boston, 1993, 101-139. MR 93m:34138
  • 92. -, Floquet theory revisited, Differential Equations and Mathematical Physics (ed. by I. Knowles), International Press, Boston, 1995, 67-84.
  • 93. -, Lamé potentials and the stationary (m)KdV hierarchy, Math. Nachr. 176 (1995), 73-91. MR 98a:58086
  • 94. -, Treibich-Verdier potentials and the stationary (m)KdV hierarchy, Math. Z. 219 (1995), 451-476. MR 96e:14030
  • 95. -, On Picard potentials, Diff. Int. Eqs. 8 (1995), 1453-1476. MR 96e:34141
  • 96. -, A characterization of elliptic finite-gap potentials, C. R. Acad. Sci. Paris 321 (1995), 837-841. MR 96k:58112
  • 97. -, Picard potentials and Hill's equation on a torus, Acta Math. 176 (1996), 73-107. MR 97f:14046
  • 98. -, A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy, Acta Math. 181 (1998), to appear.
  • 99. -, Toward a characterization of elliptic solutions of hierarchies of soliton equations, Contemp. Math., to appear.
  • 100. -, in preparation.
  • 101. M. Giertz, M. K. Kwong, and A. Zettl, Commuting linear differential expressions, Proc. Roy. Soc. Edinburgh 87A (1981), 331-347. MR 83d:12011
  • 102. J. Gray, Linear Differential Equations and Group Theory from Riemann to Poincaré, Birkhäuser, Boston, 1986. MR 89d:01041
  • 103. S. Greco and E. Previato, Spectral curves and ruled surfaces: projective models, in The Curves Seminar at Queen's, Vol. VIII (ed. by A. V. Geramita), Queen's Papers Pure Appl. Math. 88, Queen's Univ., Kingston, Ontario, Canada, 1991, F1-F33. MR 93e:58084
  • 104. P. G. Grinevich, Rational solutions for the equation of commutation of differential operators, Funct. Anal. Appl. 16 (1982), 15-19. MR 83f:58040
  • 105. V. Guillemin and A. Uribe, Hardy functions and the inverse spectral method, Commun. PDE 8 (1983), 1455-1474. MR 85h:35197
  • 106. G.-H. Halphen, Memoire sur la reduction des equations differentielles lineaires aux formes integrales, Mem. pres. l'Acad. Sci., France 28 (1884), 1-300.
  • 107. -, Sur une nouvelle classe d'équations différentielles linéaires intégrables, C. R. Acad. Sci. Paris 101 (1885), 1238-1240.
  • 108. -, Traité des Fonctions Elliptiques, tome 2, Gauthier-Villars, Paris, 1888.
  • 109. G. Hamel, Über die lineare Differentialgleichung zweiter Ordnung mit periodischen Koeffizienten, Math. Ann. 73 (1913), 371-412.
  • 110. O. Haupt, Über lineare homogene Differentialgleichungen 2. Ordnung mit periodischen Koeffizienten, Math. Ann. 79 (1919), 278-285.
  • 111. C. Hermite, Sur quelques applications des fonctions elliptiques, Comptes Rendus 85 (1877), 689-695, 728-732, 821-826.
  • 112. -, Oeuvres, tome 3, Gauthier-Villars, Paris, 1912.
  • 113. G. W. Hill, On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon, Acta Math. 8 (1886), 1-36. Reprinted from a paper first published in 1877.
  • 114. E. Hille, Ordinary Differential Equations in the Complex Domain, Dover, Mineola, N.Y., 1997. MR 97m:34001
  • 115. H. Hochstadt, On the determination of a Hill's equation from its spectrum, Arch. Rat. Mech. Anal. 19 (1965), 353-362. MR 31:6019
  • 116. I. D. Iliev, E. Kh. Khristov, and K. P. Kirchev, Spectral methods in Soliton Equations, Longman, New York, 1994. MR 97e:35129
  • 117. E. L. Ince, Further investigations into the periodic Lamé functions, Proc. Roy. Soc. Edinburgh 60 (1940), 83-99. MR 2:46d
  • 118. -, Ordinary Differential Equations, Dover, New York, 1956. MR 6:65f
  • 119. H. Itoyama and A. Morozov, Integrability and Seiberg-Witten theory curves and periods, Nuclear Phys. B 477 (1996), 855-877. MR 98d:81116
  • 120. A. R. Its, Inversion of hyperelliptic integrals and integration of nonlinear differential equations, Vestnik Leningrad Univ. Math. 9 (1981), 121-129. MR 58:29453
  • 121. A. R. Its and V. Z. Enol'skii, Dynamics of the Calogero-Moser system and the reduction of hyperelliptic integrals to elliptic integrals , Funct. Anal. Appl. 20 (1986), 62-64. MR 87j:14072
  • 122. A. R. Its and V. B. Matveev, Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation, Theoret. Math. Phys. 23 (1975), 343-355. MR 57:18570
  • 123. K. Iwasaki, Inverse problem for Sturm-Liouville and Hill equations, Ann. Math. Pura Appl. Ser. 4, 149 (1987), 185-206. MR 89d:34053
  • 124. F. Klein, Über den Hermite'schen Fall der Lamé'schen Differentialgleichung, Math. Ann. 40 (1892), 125-129.
  • 125. Q. Kong and A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Diff. Eqs. 126 (1996), 389-407. MR 97c:34176
  • 126. -, Eigenvalues of regular Sturm-Liouville problems, J. Diff. Eqs. 131 (1996), 1-19. MR 97g:34106
  • 127. B. G. Konopelchenko, Elementary Bäcklund transformations, nonlinear superposition principle and solutions of the integrable equations, Phys. Lett. 87A (1982), 445-448. MR 84a:58049
  • 128. D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 (1895), 422-443.
  • 129. N. A. Kostov and V. Z. Enol'skii, Spectral characteristics of elliptic solitons, Math. Notes 53 (1993), 287-293. MR 95j:58072
  • 130. S. Kotani, Generalized Floquet theory for stationary Schrödinger operators in one dimension, Chaos, Solitons and Fractals 8 (1997), 1817-1854. CMP 98:03
  • 131. M. Krause, Theorie der doppeltperiodischen Funktionen einer veränderlichen Grösse, Vol. 1, 1895, Vol. 2, 1897, Teubner, Leipzig.
  • 132. I. M. Krichever, Integration of nonlinear equations by the methods of algebraic geometry, Funct. Anal. Appl. 11 (1977), 12-26.
  • 133. -, Methods of algebraic geometry in the theory of non-linear equations, Russ. Math. Surv. 32:6 (1977), 185-213.
  • 134. -, Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of $N$ particles on a line, Funct. Anal. Appl. 12 (1978), 59-61.
  • 135. -, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980), 282-290. MR 82e:58046
  • 136. -, Nonlinear equations and elliptic curves, Revs. Sci. Technology 23 (1983), 51-90. MR 86a:58044
  • 137. -, Rational solutions of the Zakharov-Shabat equations and completely integrable systems of $N$ particles on a line, J. Sov. Math. 21, 335-345 (1983).
  • 138. -, Elliptic solutions of nonlinear integrable equations and related topics, Acta Appl. Math. 36 (1994), 7-25. MR 95j:58073
  • 139. -, Elliptic solutions to difference non-linear equations and nested Bethe ansatz equations, preprint, solv-int/9804016.
  • 140. I. Krichever, O. Babelon, E. Billey, and M. Talon, Spin generalization of the Calogero-Moser system and the matrix KP equation, Amer. Math. Soc. Transl. (2) 170 (1995), 83-119. MR 96k:58115
  • 141. I. M. Krichever and D. H. Phong, On the integrable geometry of soliton equations and $N=2$ supersymmetric gauge theories, J. Diff. Geom. 45 (1997), 349-389. MR 98b:58078
  • 142. I. Krichever, P. Wiegmann, and A. Zabrodin, Elliptic solutions to difference non-linear equations and related many-body problems, Commun. Math. Phys. 193 (1998), 373-396. CMP 98:13
  • 143. I. Krichever and A. Zabrodin, Spin generalization of the Ruijsenaars-Schneider model, non-abelian $2$ D Toda chain and representations of Sklyanin algebra, Russ. Math. Surv. 50:6 (1995), 1101-1150. MR 97f:58068
  • 144. V. B. Kuznetsov, F. W. Nijhoff, and E. K. Sklyanin, Separation of variables for the Ruijsenaars system, Commun. Math. Phys. 189 (1997), 855-877. CMP 98:04
  • 145. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Math. Phys. 21 (1968), 467-490. MR 38:3620
  • 146. -, Outline of a theory of the KdV equation, Recent Mathematical Methods in Nonlinear Wave Propagation (ed. by T. Ruggeri), Lecture Notes in Mathematics 1640 (1996), Springer, Berlin, 70-102. CMP 98:07
  • 147. J. E. Lee and M. P. Tsui, The geometry and completeness of the two-phase solutions of the nonlinear Schrödinger equation, Nonlinear Evolution Equations and Dynamical Systems (ed. by S. Carillo and O. Ragnisco), Springer, Berlin, 1990, 94-97. CMP 91:02
  • 148. A. M. Levin and M. A. Olshanetsky, Hierarchies of isomonodromic deformations and Hitchin systems, preprint, hep-th/9709207.
  • 149. A. Liapounoff, Sur une équation transcendante et les équations différentielles linéaires du second ordre à coefficients périodiques, Comptes Rendus 128 (1899), 1085-1088.
  • 150. W. Magnus and S. Winkler, Hill's Equation, Dover, New York, 1979. MR 80k:34001
  • 151. A. Marshakov, On integrable systems and supersymmetric gauge theories, Theoret. Math. Phys. 112 (1997), 791-826. MR 98h:58084
  • 152. V. A. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986. MR 88f:34034
  • 153. A. I. Markushevich, Theory of Functions of a Complex Variable, 2nd. ed., Chelsea, New York, 1985. MR 56:3258
  • 154. V. B. Matveev, Some comments on the rational solutions of the Zakharov-Shabat equations, Lett. Math. Phys. 3 (1979), 503-512. MR 81j:35100
  • 155. V. B. Matveev and A. O. Smirnov, Symmetric reductions of the Riemann $\theta$-function and some of their applications to the Schrödinger and Boussinesq equation, Amer. Math. Soc. Transl. (2) 157 (1993), 227-237. CMP 94:05
  • 156. D. McGarvey, Operators commuting with translations by one. Part I. Representation theorems, J. Math. Anal. Appl. 4 (1962), 366-410. MR 27:594
  • 157. -, Operators commuting with translations by one. Part II. Differential operators with periodic coefficients in $L_p(-\infty,\infty)$, J. Math. Anal. Appl. 11 (1965), 564-596. MR 35:3483a
  • 158. -, Operators commuting with translations by one. Part III. Perturbation results for periodic differential operators, J. Math. Anal. Appl. 12 (1965), 187-234. MR 35:3483b
  • 159. H. P. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent. Math. 30 (1975), 217-274. MR 53:936
  • 160. H. P. McKean and E. Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Commun. Pure Appl. Math. 29 (1976), 143-226. MR 55:761
  • 161. J. Mertsching, Quasi periodic solutions of the nonlinear Schrödinger equation, Fortschr. Phys. 35 (1987), 519-536. MR 89h:35311
  • 162. G. Mittag-Leffler, Sur les équations différentielles linéaires à coefficients doublement périodiques, C. R. Acad. Sci. Paris, 90, 299-300 (1880).
  • 163. R. M. Miura, Korteweg-de Vries equation and generalization, I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9 (1968), 1202-1204. MR 40:6042a
  • 164. R. M. Miura, C. S. Gardner, and M. D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9 (1968), 1204-1209. MR 40:6042b
  • 165. J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math. 16 (1975), 197-220. MR 51:12058
  • 166. -, Integrable Hamiltonian systems and spectral theory, Academia Nationale Dei Lincei, Scuola Normale Superiore, Lezione Fermiani, 1983. MR 87j:58042
  • 167. D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related non-linear equations, Int. Symp. on Algebraic Geometry, Kyoto, 1977, 115-153. MR 83j:14041
  • 168. S. P. Novikov, The periodic problem for the Korteweg-de Vries equation, Funct. Anal. Appl. 8 (1974), 236-246. MR 52:3760
  • 169. S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons, Consultants Bureau, New York, 1984. MR 86k:35142
  • 170. M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite-dimensional systems related to Lie Algebras, Phys. Rep. 71 (1981), 313-400. MR 83d:58032
  • 171. A. R. Osborne and G. Boffetta, A summable multiscale expansion for the KdV equation, Nonlinear Evolution Equations: Integrability and Spectral Methods (ed. by A. Degasperis, A. P. Fordy, and M. Lakshmanan), Manchester Univ. Press, Manchester, 1990, 559-569.
  • 172. R. S. Palais, The symmetries of solitons, Bull. Amer. Math. Soc. 34 (1997), 339-403. MR 98f:58111
  • 173. L. A. Pastur and V. A. Tkachenko, Spectral theory of Schrödinger operators with periodic complex-valued potentials, Funct. Anal. Appl. 22 (1988), 156-158. MR 89d:34056
  • 174. -, An inverse problem for a class of one-dimensional Schrödinger operators with a complex periodic potential, Math. USSR Izv. 37 (1991), 611-629. MR 92c:34099
  • 175. -, Geometry of the spectrum of the one-dimensional Schrödinger equation with a periodic complex-valued potential, Math. Notes 50 (1991), 1045-1050. MR 93h:34147
  • 176. M. V. Pavlov, Nonlinear Schrödinger equation and the Bogolyubov-Whitham method of averaging, Theoret. Math. Phys. 71 (1987), 584-588. MR 89a:35202
  • 177. R. Pego, Origin of the KdV equation, Notices Amer. Math. Soc. 45 (1998), 358.
  • 178. D. Pelinovsky, Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles.I. New form of a general rational solution, J. Math. Phys. 35 (1994), 5820-5830. MR 95h:58071
  • 179. E. Picard, Sur une généralisation des fonctions périodiques et sur certaines équations différentielles linéaires, C. R. Acad. Sci. Paris 89 (1879), 140-144.
  • 180. -, Sur une classe d'équations différentielles linéaires, C. R. Acad. Sci. Paris 90 (1880), 128-131.
  • 181. -, Sur les équations différentielles linéaires à coefficients doublement périodiques, J. reine angew. Math. 90 (1881), 281-302.
  • 182. -, Leçons sur Quelques Équations Fonctionnelles, Gauthier Villars, Paris, 1928.
  • 183. E. Previato, The Calogero-Moser-Krichever system and elliptic Boussinesq solitons, in Hamiltonian Systems, Transformation Groups and Spectral Transform Methods (ed. by J. Harnard and J. E. Marsden), CRM, Montréal, 1990, 57-67. MR 92e:58100
  • 184. -, Monodromy of Boussinesq elliptic operators, Acta Appl. Math. 36 (1994), 49-55. MR 95m:58079
  • 185. -, Seventy years of spectral curves, Integrable Systems and Quantum Groups (ed. by R. Donagi, B. Dubrovin, E. Frenkel, and E. Previato), Lecture Notes in Mathematics 1620, Springer, Berlin, 1996, 419-481. MR 97e:58119
  • 186. E. Previato and J.-L. Verdier, Boussinesq elliptic solitons: the cyclic case, Proceedings of the Indo-French Conference on Geometry, Dehli, 1993, S. Ramanan and A. Beuaville (eds.), Hindustan Book Agency, Delhi, 1993, 173-185. MR 96f:14038
  • 187. F. S. Rofe-Beketov, The spectrum of non-selfadjoint differential operators with periodic coefficients, Sov. Math. Dokl. 4 (1963), 1563-1566. MR 28:274
  • 188. S. N. M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys. 110 (1987), 191-213. MR 88i:58072
  • 189. J.-J. Sansuc and V. Tkachenko, Spectral properties of non-selfadjoint Hill's operators with smooth potentials, Algebraic and Geometric Methods in Mathematical Physics (ed. by A. Boutel de Monvel and V. Marchenko), Kluwer, Dordrecht, 1996, 371-385. MR 97a:34226
  • 190. -, Spectral parametrization of non-selfadjoint Hill's operators, J. Diff. Eqs. 125 (1996), 366-384. MR 97a:34222
  • 191. -, Characterization of the periodic and anti-periodic spectra of nonselfadjoint Hill's operators, New Results in Operator Theory and its Applications (ed. by I. Gohberg and Yu. Lubich), Operator Theory: Advances and Applications 98, Birkhäuser, Basel, 1997, 216-224. MR 98i:34124
  • 192. J. Schur, Über vertauschbare lineare Differentialausdrücke, Sitzungsber. der Berliner Math. Gesell. 4 (1905), 2-8.
  • 193. G. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. Math. IHES 61 (1985), 5-65. MR 87b:58039
  • 194. T. Shiota, Calogero-Moser hierarchy and KP hierarchy, J. Math. Phys. 35 (1994), 5844-5849. MR 95i:58095
  • 195. A. O. Smirnov, Elliptic solutions of the Korteweg-de Vries equation, Math. Notes 45 (1989), 476-481. MR 90j:58066
  • 196. -, Real elliptic solutions of the ``sine-Gordon'' equation, Math. USSR Sbornik /bf 70 (1991), 231-240. MR 92g:14046
  • 197. -, Finite-gap elliptic solutions of the KdV equation, Acta Appl. Math. 36 (1994), 125-166. MR 96c:35173
  • 198. -, Solutions of the KdV equation elliptic in $t$, Theoret. Math. Phys. 100 (1994), 937-947. MR 96b:14060
  • 199. -, The Dirac operator with elliptic potential, Sbornik Math. 186 (1995), 1213-1221. MR 96g:35186
  • 200. -, Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg-de Vries equation, Russ. Acad. Sci. Sb. Math. 82 (1995), 461-470. MR 96f:35157
  • 201. -, On a class of elliptic solutions of the Boussinesq equations, Theoret. Math. Phys. 109 (1996), 1515-1522. CMP 98:01
  • 202. -, The elliptic-in-t solutions of the nonlinear Schrödinger equation, Theoret. Math. Phys. 107 (1996), 568-578. MR 97g:35161
  • 203. -, On a class of elliptic potentials of the Dirac operator, Sbornik Math. 188 (1997), 115-135. MR 98e:34153
  • 204. -, Real-valued elliptic solutions of equations related to the sine-Gordon equation, St. Petersburg Math. J. 8 (1997), 513-524. MR 97e:35164
  • 205. -, 3-elliptic solutions of the sine-Gordon equation, Math. Notes 62 (1997), 368-376. CMP 98:12
  • 206. V. V. Sokolov, Examples of commutative rings of differential operators, Funct. Anal. Appl. 12 (1978), 65-66. MR 58:17963
  • 207. I. A. Taimanov, Elliptic solutions of nonlinear equations, Theoret. Math. Phys. 84 (1990), 700-706. MR 91k:14020
  • 208. -, On the two-gap elliptic potentials, Acta Appl. Math. 36 (1994), 119-124. MR 95j:33057
  • 209. C.-L. Terng and K. Uhlenbeck, Poisson actions and scattering theory for integrable systems, preprint, dg-ga/9707004.
  • 210. V. A. Tkachenko, Spectral analysis of the one-dimensional Schrödinger operator with periodic complex-valued potential, Sov. Math. Dokl. 5 (1964), 413-415.
  • 211. -, Spectral analysis of a nonselfadjoint Hill operator, Sov. Math. Dokl. 45 (1992), 78-82. MR 93f:34148
  • 212. -, Discriminants and generic spectra of non-selfadjoint Hill's operators, Adv. Sov. Math. 19 (1994), 41-71. MR 95i:34157
  • 213. -, Spectral properties of periodic Dirac operator with skew-symmetric potential matrix, preprint, 1994.
  • 214. -, Spectra of non-selfadjoint Hill's operators and a class of Riemann surfaces, Ann. Math. 143 (1996), 181-231. MR 97f:34067
  • 215. -, Non-selfadjoint periodic Dirac operators, preprint, 1997.
  • 216. -, Non-selfadjoint periodic Dirac operators with finite-band spectrum, preprint, 1998.
  • 217. A. Treibich, Tangential polynomials and elliptic solitons, Duke Math. J. 59 (1989), 611-627. MR 91k:58059
  • 218. -, Compactified Jacobians of Tangential Covers, Integrable Systems: The Verdier Memorial Conference (ed. by O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach), Birkhäuser, Boston, 1993, 39-60. MR 95k:14043
  • 219. -, Rêvetements tangentiels et condition de Brill-Noether, C. R. Acad. Sci. Paris 316 (1993), 815-817. MR 94b:14023
  • 220. -, New elliptic potentials, Acta Appl. Math. 36 (1994), 27-48. MR 96h:14043
  • 221. -, Matrix elliptic solitons, Duke Math. J. 90 (1997), 523-547. CMP 98:04
  • 222. A. Treibich and J.-L. Verdier, Solitons elliptiques, The Grothendieck Festschrift, Volume III (ed. by P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Y. Manin and K. A. Ribet), Birkhäuser, Basel, 1990, 437-480. MR 92f:14026
  • 223. -, Revêtements tangentiels et sommes de 4 nombres triangulaires, C. R. Acad. Sci. Paris 311 (1990), 51-54. MR 91k:14022
  • 224. -, Revêtements exceptionnels et sommes de 4 nombres triangulaires, Duke Math. J. 68 (1992), 217-236. MR 94f:14026
  • 225. -, Variétés de Kritchever des solitons elliptiques de KP, in Proceedings of the Indo-French Conference on Geometry (Bombay, 1989), Hindustan Book Agency, Delhi, 1993, 187-232. MR 95f:14062
  • 226. -, Au-delà des potentiels et rêvetements tangentiels hyperelliptiques exceptionnels, C. R. Acad. Sci. Paris 325 (1997), 1101-1106. CMP 98:10
  • 227. A. V. Turbiner, Lame equation, sl(2) algebra and isospectral deformations, J. Phys. A22 (1989), L1-L3. MR 89k:58135
  • 228. K. L. Vaninsky, Trace formula for a system of particles with elliptic potential, preprint, solv-int/9707002.
  • 229. J.-L. Verdier, New elliptic solitons, Algebraic Analysis (ed. by M. Kashiwara and T. Kawai), Academic Press, Boston, 1988, 901-910. MR 90g:58053
  • 230. G. Wallenberg, Über die Vertauschbarkeit homogener linearer Differentialausdrücke, Arch. Math. Phys. 4 (1903), 252-268.
  • 231. R. S. Ward, The Nahm equations, finite-gap potentials and Lamé functions, J. Phys. A20 (1987), 2679-2683. MR 88k:34030
  • 232. R. Weikard, On Hill's equation with a singular complex-valued potential, Proc. London Math. Soc. 76 (1998), 603-633. CMP 98:11
  • 233. -, On rational and periodic solutions of stationary KdV equations, preprint 1997.
  • 234. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1986. MR 97k:01072
  • 235. G. Wilson, Commuting flows and conservation laws for Lax equations, Math. Proc. Camb. Phil. Soc. 86 (1979), 131-143. MR 80k:58059
  • 236. -, Algebraic curves and soliton equations, Geometry Today (ed. by E. Arbarello, C. Procesi, and E. Strickland), Birkhäuser, Boston, 1985, 303-329. MR 88i:58077
  • 237. A. Wintner, Stability and spectrum in the wave mechanics of lattices, Phys. Rev. 72 (1947), 81-82. MR 8:615f
  • 238. -, On the location of continuous spectra, Am. J. Math. 70 (1948), 22-30. MR 9:435k
  • 239. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, Vol. 1, Wiley, New York, 1975. MR 51:994
  • 240. N. J. Zabusky and M. D. Kruskal, Interaction of ``solitons'' in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240-243.
  • 241. V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation: A completely integrable Hamiltonian system, Funct. Anal. Appl. 5 (1971), 280-287.
  • 242. V. E. Zakharov and A. S. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62-69. MR 53:9966

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 34L40, 35Q53, 35Q55, 34B30, 34L05, 35Q51

Retrieve articles in all journals with MSC (1991): 34L40, 35Q53, 35Q55, 34B30, 34L05, 35Q51


Additional Information

Fritz Gesztesy
Affiliation: Department of Mathematics, University of Missouri, Columbia, MO 65211
Email: fritz@math.missouri.edu

Rudi Weikard
Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170
Email: rudi@math.uab.edu

DOI: https://doi.org/10.1090/S0273-0979-98-00765-4
Received by editor(s): May 20, 1998
Received by editor(s) in revised form: August 10, 1998
Additional Notes: Research supported in part by the US National Science Foundation under Grant Nos. DMS-9401816 and DMS-9623121.
Article copyright: © Copyright 1998 by the authors

American Mathematical Society