Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Finite simple groups which projectively embed in an exceptional Lie group are classified!


Authors: Robert L. Griess Jr. and A. J. E. Ryba Jr.
Journal: Bull. Amer. Math. Soc. 36 (1999), 75-93
MSC (1991): Primary 17Bxx, 20Bxx, 20Cxx, 20Dxx, 20Exx, 22Exx
DOI: https://doi.org/10.1090/S0273-0979-99-00771-5
MathSciNet review: 1653177
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Since finite simple groups are the building blocks of finite groups, it is natural to ask about their occurrence ``in nature''. In this article, we consider their occurrence in algebraic groups and moreover discuss the general theory of finite subgroups of algebraic groups.


References [Enhancements On Off] (What's this?)

  • [Alek] A. V. Alekseevski, Finite commutative Jordan subgroups of complex simple Lie groups, Functional Analysis Appl. 8 (1974), 277-279. MR 52:653
  • [Bor89] A. Borovik, On the structure of finite subgroups of the simple algebraic groups, Algebra and Logic 28 (1989), 249-279 (in Russian). MR 91h:20071
  • [Bor90] A. Borovik, Finite subgroups of simple algebraic groups, Soviet Math. Dokl. 40, 570-573, (translation). MR 90m:20051
  • [BS] A. Borel and J.-P. Serre, Sur certains sous-groupes de Lie compacts, Comment. Hath. Helv., 27(1953), 128-139. MR 14:948d
  • [Car] R. W. Carter, Simple Groups of Lie Type, John Wiley and Sons, London, 1989. MR 90g:20001
  • [CG] Arjeh Cohen and Robert L. Griess, Jr, On finite simple subgroups of the complex Lie group of type $E_{8}$, Proc. Symp. Pure Math. 47 (1987), 367-405. MR 90a:20089
  • [CG93] Arjeh Cohen and Robert L. Griess, Jr, Non-Local Lie primitive subgroups of Lie groups, Can. J. Math. 45 (1)(1993), 88-103. MR 94a:22012
  • [CGL] Arjeh Cohen, Robert Griess and Bert Lisser, The group $L(2,61)$ embeds in the Lie group of type $E_{8}$, Comm. in Algebra, 21(6), 1889-1907 (1993). MR 94m:20041
  • [CS] Arjeh M. Cohen and Gary M. Seitz, The $r$-rank of the groups of exceptional Lie type, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 3, 251-259. MR 88k:20062
  • [CW83] Arjeh Cohen and David Wales, Finite subgroups of $G_2(\mathbb{C})$, Comm. Algebra 11 (1983), 441-459. MR 85b:20010
  • [CW93] Arjeh Cohen and David Wales, Embeddings of the group $L(2,13)$ in groups of Lie type $E_{6}$. Israel Journal of Mathematics, 82 (1993), 45-86. MR 94h:20020
  • [CW95] Arjeh Cohen and David Wales, Finite simple subgroups of semisimple complex Lie groups - a survey, from Groups of Lie Type and their Geometries, edited by W. M. Kantor and L. Di Martino, Cambridge University Press 1995. MR 96e:20021
  • [CW97] Arjeh Cohen and David Wales, On finite subgroups of $F_4(\mathbb{C})~$and $E_6(\mathbb{C})$, Proc. London Math. Soc., (3) 74 (1997), 105-150. MR 97k:20078
  • [Cox] Coxeter, H. S. M., Integral Cayley numbers, Duke Math. J. 13 (1946), 561-578. MR 8:370b
  • [Fe] Walter Feit, Characters of Finite Groups, Benjamin, New York, 1967. MR 36:2715
  • [FoG] P. Fong and R. Griess, An infinite family of elementwise conjugate nonconjugate homomorphisms, International Mathematics Research Notices, 1995, 5, 249-252. MR 96e:20029
  • [F1] Darrin Frey, Conjugacy of alternating groups of degree 5 and $SL(2,5)$ subgroups of the complex Lie group of type $E_{8}$, Thesis, University of Michigan, 1995.
  • [F2] Darrin Frey, Conjugacy of alternating groups of degree 5 and $SL(2,5)$ subgroups of the complex Lie group of type $E_{8}$, Memoirs of the American Mathematical Society, to appear.
  • [F3] Darrin Frey, Conjugacy of alternating groups of degree 5 and $SL(2,5)$ subgroups of the complex Lie group of types $F_{4}$ and $E_{6}$, to appear in Journal of Algebra.
  • [FrG] D. Frey and R. Griess, The conjugacy classes of elements in the Borovik group, Journal of Algebra 203 (1998), 226-243. CMP 98:12
  • [Frob] G. Frobenius, Über die cogredienten Transformationen der bilinearen Formen, S.-B. Preuss. Akad. Wiss. (Berlin) 7-16 (1896); Gesammelte Abhandlungen, II , 695-704.
  • [Gor] Daniel Gorenstein, Finite Groups, Harper and Row, New York, 1968. MR 38:229
  • [GrElAb] Robert L. Griess, Jr., Elementary Abelian $p$-Subgroups of Algebraic Groups, Geom. Dedicata 39 (1991), 253-305. MR 92i:20047
  • [GrG2] Robert L. Griess, Jr., Basic conjugacy theorem for $G_2$, Invent. Math., 121 (1995) 257-277. MR 96f:20065
  • [GrTwelve] Robert L. Griess, Jr., Twelve Sporadic Groups, Springer Mathematical Monograph, Springer Verlag, 1998.
  • [GRU] Robert L. Griess, Jr. and A. J. E. Ryba, Embeddings of $U(3,8)$, $Sz(8)$ and the Rudvalis group in algebraic groups of type $E_{7}$, Inventiones Math. 116 , 215-241 (1994). MR 94k:20024
  • [GR31] Robert L. Griess, Jr. and A. J. E. Ryba, Embeddings of $PGL(2,31)$ and $SL(2,32)$ in $E_8(\mathbb{C})$, Duke Math. Journal 94 (1998), 181-211. CMP 98:16
  • [GR41] Robert L. Griess, Jr. and A. J. E. Ryba, Embeddings of $PSL(2,41)$ and $PSL(2,49)$ in $E_8(\mathbb{C})$, to appear in Journal of Symbolic Computation.
  • [GRQ] Robert L. Griess, Jr. and A. J. E. Ryba, The finite quasisimple groups which embed in exceptional Lie groups. Preprint.
  • [GR8] Robert L. Griess, Jr. and A. J. E. Ryba, Embeddings of $Sz(8)$ into exceptional Lie groups. Preprint.
  • [Hup] B. Huppert, Endliche Gruppen I, Springer Verlag, Berlin, 1968. MR 37:302
  • [I] I. Martin Isaacs, Character Theory of Finite Groups, Academic Press, 1976. MR 57:417
  • [J] Zvonimir Janko, A new finite simple group with abelian Sylow $2$-subgroups and its characterization, J. Algebra 3 147-186 (1966). MR 33:1359
  • [K] Michael J. Kantor, $SL(2,7)$ and $PSL(2,7)$ Subgroups of $E_8(\mathbb{C})~$and their Actions on a Maximal Torus, Thesis, University of Michigan, 1996.
  • [KR] P. Kleidman and A. J. E. Ryba, Kostant's Conjecture Holds for $E_{7}$: $L_{2}(37) < E_{7}(\mathbb{C})$, J. Alg. 161(2), 535-540 (1993). MR 94k:20025
  • [Kul] B. Kulshammer, Algebraic representations of finite groups, Universität Augsburg, 1992.
  • [Lar1] M. Larsen, On the conjugacy of element-conjugate homomorphisms, Israel Journal, 88 (1994), 253-277. MR 95k:20073
  • [Lar2] M. Larsen, On the conjugacy of element-conjugate homomorphisms, II, Quart. J. Math. Oxford Ser. (2) 47 (1996), 73-85. MR 97b:20070
  • [Mal] A. I. Mal'cev, Semisimple subgroups of Lie groups, Amer. Math. Soc. Translations 1, 172-273 (1962).
  • [McK] John McKay, Finite Groups - Coming of Age, Proc. Can. Math. Soc. Conf., held June 15-28, 1982, Amer. Math. Soc., Providence, RI, 1985, 271-285. MR 86j:20002
  • [Sep] Mark R. Sepanski, Kostant's conjecture and $L_2(q)$ invariant theory in the rank two Lie groups, Comm. Alg., 24 (1996), no. 6, 1915-1938. MR 97g:20020
  • [S96] J-P. Serre, Exemples de plongements des groupes $PSL(2,\mathbb{F}_{p})$ dans des groupes de Lie simples, Inventiones Math. 124, 525-562 (1996). MR 97d:20056
  • [SP] J-P. Serre, Personal Communication, 1998.
  • [Slo] Peter Slodowy, Two notes on a finiteness problem in the representation theory of finite groups, Hamburger Beiträge zur Mathematik, aus dem Mathematischen Seminar, Heft 21; 1993. Published in ``Algebraic Groups and Lie Groups" (A volume of papers in honour of the late R.W. Richardson), Ed. G.I. Lehrer, Australian Math. Soc. Lecture Series No. 9, Cambridge University Press, Cambridge, 1997; pages 331-346. CMP 98:16
  • [Spr] T. A. Springer, Regular elements of finite reflection groups, Inventiones Math. 25 (1974), 159-198. MR 50:7371
  • [Tits55] Jacques Tits, Sous-algèbres des algèbres de Lie semi-simples (d'apres V. Morosov, A. Malcev, E.Dynkin et F. Karpelevitch), Séminaire Bourbaki, No. 119, May 1955. CMP 98:09
  • [W] David Wales, Finite linear groups of degree 7, Canadian J. Math. 21, 1025-1041 (1969) [see also Bull. Amer. Math. Soc. 74, 197-198 (1968). MR 40:1489
  • [Weil] A. Weil, Remarks on the cohomology of groups, Ann. Math. 80 (1964), 149-157; also [1964a], vol.3 in Oeuvres scientifiques ; Collected papers / Andre Weil. New York : Springer-Verlag (1979), 3 volumes. MR 30:199

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 17Bxx, 20Bxx, 20Cxx, 20Dxx, 20Exx, 22Exx

Retrieve articles in all journals with MSC (1991): 17Bxx, 20Bxx, 20Cxx, 20Dxx, 20Exx, 22Exx


Additional Information

Robert L. Griess Jr.
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1003
Email: rlg@math.lsa.umich.edu

A. J. E. Ryba Jr.
Affiliation: Department of Mathematics, Marquette University, Milwaukee, WI 53201-1881
Address at time of publication: Department of Mathematics, Queens College, CUNY, Flushing, NY 11367-1597
Email: alexr@sylow.mscs.mu.edu

DOI: https://doi.org/10.1090/S0273-0979-99-00771-5
Received by editor(s): April 13, 1998
Received by editor(s) in revised form: May 19, 1998, and October 16, 1998
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society