Recent developments on the Ricci flow

Authors:
Huai-Dong Cao and Bennett Chow

Journal:
Bull. Amer. Math. Soc. **36** (1999), 59-74

MSC (1991):
Primary 58G11; Secondary 53C21, 35K55

DOI:
https://doi.org/10.1090/S0273-0979-99-00773-9

MathSciNet review:
1655479

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article reports recent developments of the research on Hamilton's Ricci flow and its applications.

**[AM]**U. Abresch and W.T. Meyer,*Injectivity radius estimates and sphere theorems*, in Comparison Geometry, MSRI Publications, vol.**30**(1997) 1-47, Cambridge Univ. Press. MR**98e:53052****[A1]**M. Anderson,*Extrema of curvature functionals on the space of metrics on 3-manifolds*, Calc. Var.**5**(1997) 199-269. MR**98a:58041****[A2]**M. Anderson,*Scalar curvature and geometrization conjectures for 3-manifolds*, in Comparison Geometry, MSRI Publications, vol.**30**(1997) 49-82, Cambridge Univ. Press. MR**98e:58050****[Ba]**S. Bando,*On three-dimensional compact Kähler manifolds of nonnegative bisectional curvature*, J.D.G.**19**(1984) 283-297. MR**86i:53042****[BSY]**J. Bartz, M. Struwe, and R. Ye,*A new approach to the Ricci flow on*, Annali de Scuola Normale Superiore di Pisa**21**(1994) 475-482. MR**95i:53039****[Ca1]**H.-D. Cao,*Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds*, Invent. Math.**81**(1985) 359-372. MR**87d:58051****[Ca2]**H.-D. Cao,*On Harnack's inequalities for the Kähler-Ricci flow*, Invent. Math.**109**(1992) 247-263. MR**93f:58227****[Ca3]**H.-D. Cao,*Limits of solutions to the Kähler-Ricci flow*, J. Differential Geom.**45**(1997) 257-272. CMP**97:13****[Ca4]**H.-D. Cao,*Existence of gradient Kähler-Ricci solitons*, Elliptic and parabolic methods in geometry, B. Chow, R. Gulliver, S. Levy, J. Sullivan ed., AK Peters (1996) 1-16. MR**98a:53058****[CH]**H.-D. Cao and R. S. Hamilton,*Gradient Kähler-Ricci solitons and periodic orbits*, Comm. Anal. Geom. (to appear).**[C]**H. Chen,*Pointwise quarter-pinched**-manifolds*, Ann. Global Anal. Geom.**9**(1991) 161-176. MR**93b:53028****[Ch]**B. Chow,*The Ricci flow on the**-sphere*, J. Differential Geom.**33**(1991) 325-334. MR**92d:53036****[CC]**B. Chow and S.-C. Chu,*A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow*, Math. Research Letters**2**(1995) 701-718. MR**97f:53063****[CG]**J. Cheeger and M. Gromov,*Collapsing Riemannian manifolds while keeping their curvature bounded, I., II.*, J. Differential Geom.**23**(1986) 309-346,**32**(1990) 269-298. MR**87k:53087**; MR**92a:53066****[De]**D. DeTurck,*Deforming metrics in the direction of their Ricci tensors*, J. Differential Geom.**18**(1983) 157-162; ibid.,*improved version*, to appear in Selected Papers on the Ricci Flow, ed. H.-D. Cao, B. Chow, S.-C. Chu, and S.-T. Yau, International Press. MR**85j:53050****[ES]**J. Eells and J. Sampson,*Harmonic mappings of Riemannian manifolds*, Amer. J. Math.**86**(1964) 109-160. MR**29:1603****[Ha1]**R. S. Hamilton,*Three-manifolds with positive Ricci curvature*, J. Differential Geom.**17**(1982) 255-306. MR**84a:53050****[Ha2]**R. S. Hamilton,*Four-manifolds with positive curvature operator*, J. Differential Geom.**24**(1986) 153-179. MR**87m:53055****[Ha3]**R. S. Hamilton,*The Ricci flow on surfaces*, Contemporary Mathematics**71**(1988), 237-261. MR**89i:53029****[Ha4]**R. S. Hamilton,*An isoperimetric estimate for the Ricci flow on surfaces*, in Modern Methods in Complex Analysis, The Princeton conference in honor of Gunning and Kohn, pp. 191-200, ed. T. Bloom, etal., Annals of Math. Studies**137**, Princeton Univ. Press (1995). MR**96k:53059****[Ha5]**R. S. Hamilton,*Non-singular solutions of the Ricci flow on three-manifolds*, Comm. Anal. Geom. (1998) to appear.**[Ha6]**R. S. Hamilton,*Four-manifolds with positive isotropic curvature*, Comm. Anal. Geom.**5**(1997) 1-92. CMP**97:14****[Ha7]**R. S. Hamilton,*The Harnack estimate for the Ricci flow*, J. Differential Geom.**37**(1993) 225-243. MR**93k:58052****[Ha8]**R. S. Hamilton,*Eternal solutions to the Ricci flow*, J. Differential Geom.**38**(1993) 1-11. MR**94g:58043****[Ha9]**R. S. Hamilton,*Formation of singularities in the Ricci flow*, Surveys in Diff. Geom.**2**(1995) 7-136, International Press, Boston. MR**97e:53075****[Hu]**G. Huisken,*Ricci deformation of the metric on a Riemannian manifold*, J. Differential Geom.**21**(1985) 47-62. MR**86k:53059****[IJ]**J. Isenberg and M. Jackson,*Ricci flow of locally homogeneous geometries on closed manifolds*, J. Diff. Geom.**35**(1992) 723-741. MR**93c:58049****[Iv]**T. Ivey,*Ricci solitons on compact three-manifolds*, Diff. Geom. and its Appl.**3**(1993) 301-307. MR**94j:53048****[LY]**P. Li and S.-T. Yau,*On the parabolic kernel of the Schrödinger operator*, Acta. Math.**156**(1986) 153-201. MR**87f:58156****[Ma]**C. Margerin,*A sharp theorem for weakly pinched 4-manifolds*, C.R. Acad. Sci. Paris Serie 1**17**(1986) 303;*Pointwise pinched manifolds are space forms*, Geometric Measure Theory Conference at Arcata, Proc. Symp. Pure Math.**44**(1986). MR**87k:53092**; MR**87g:53063****[MM]**M. Micallef and J. D. Moore,*Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes*, Ann. of Math. (2)**127**(1988) 199-227. MR**89e:53088****[Mo]**N. Mok,*The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature*, J. Differential Geom.**27**(1988) 179-214. MR**89d:53115****[Ni]**S. Nishikawa,*Deformation of Riemannian metrics and manifolds with bounded curvature ratios*, Geometric Measure Theory Conference at Arcata, Proc. Symp. Pure Math.**44**(1986) 343-352;*On deformation of Riemannian metrics and manifolds with positive curvature operator*, Lecture Notes in Math.**1201**(1986) 201-211. MR**87i:58032**; MR**87k:53094****[Sc]**R. Schoen,*Conformal deformation of a Riemannian to constant scalar curvature*, J. Differential Geom.**20**(1984) 479-495. MR**86i:58137****[SY]**R. Schoen and S.-T. Yau,*Existence of incompressible minimal surfaces and the topology of**-manifolds with nonnegative scalar curvature*, Ann. Math. (1979)**110**127-142. MR**81k:58029****[S]**P. Scott,*The geometries of**-manifolds*, Bull. London Math. Soc.**15**(1983) 401-487. MR**84m:57009****[Sh1]**W. X. Shi,*Deforming the metric on complete Riemannian manifolds*, J. Differential Geom.**30**(1989) 223-301;*Ricci deformation of the metric on complete noncompact Riemannian manifolds*, J. Differential Geom.**30**(1989) 303-394. MR**90i:58202**; MR**90f:53080****[Sh2]**W. X. Shi,*Complete noncompact Kähler manifolds with positive holomorphic bisectional curvature*, Bull. Amer. Math. Soc.**23**(1990) 437-440. MR**91e:53069****[Sh3]**W. X. Shi,*Ricci flow and the uniformization on complete noncompact Kähler manifolds*, J. Differential Geom.**45**(1997) 94-220. MR**98d:53099****[T]**W. Thurston,*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc.**6**(1982) 357-381. MR**83h:57019**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1991):
58G11,
53C21,
35K55

Retrieve articles in all journals with MSC (1991): 58G11, 53C21, 35K55

Additional Information

**Huai-Dong Cao**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, TX 77843

Email:
cao@math.tamu.edu

**Bennett Chow**

Affiliation:
Department of Mathematics, University of Minnesota, Minneapolis, MN 55455

Email:
bchow@math.umn.edu

DOI:
https://doi.org/10.1090/S0273-0979-99-00773-9

Received by editor(s):
June 17, 1997

Received by editor(s) in revised form:
October 15, 1998

Additional Notes:
Authors partially supported by the NSF

Article copyright:
© Copyright 1999
American Mathematical Society