Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF
Book Information:

Authors: G. Cornell, J. H. Silverman and G. Stevens
Title: Modular forms and Fermat's Last Theorem
Additional book information: Springer-Verlag, New York, 1997, xix + 582 pp., ISBN 0-387-94609-8, $49.95

References [Enhancements On Off] (What's this?)

  • [1] B. Conrad, F. Diamond and R. Taylor, Modularity of certain potentially crystalline Galois representations, to appear in Journal of the American Mathematical Society 12 (2) (1999).
  • [2] Gary Cornell and Joseph H. Silverman (eds.), Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984. MR 861969
  • [3] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 143–316. Lecture Notes in Math., Vol. 349 (French). MR 0337993
  • [4] H. Jacquet and R. P. Langlands, Automorphic forms on 𝐺𝐿(2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
  • [5] Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569
  • [6] Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, 10.2307/2118560
  • [7] Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, 10.2307/2118559

Review Information:

Reviewer: Kevin Buzzard
Affiliation: Imperial College of Science, Technology and Medicine
Email: buzzard@ic.ac.uk
Journal: Bull. Amer. Math. Soc. 36 (1999), 261-266
DOI: https://doi.org/10.1090/S0273-0979-99-00778-8
Published electronically: February 22, 1999
Review copyright: © Copyright 1999 American Mathematical Society