Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Aspects of global Riemannian geometry


Author: Peter Petersen
Journal: Bull. Amer. Math. Soc. 36 (1999), 297-344
MSC (1991): Primary 53C20
DOI: https://doi.org/10.1090/S0273-0979-99-00787-9
Published electronically: May 24, 1999
MathSciNet review: 1698926
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we survey some of the developments in Riemannian geometry. We place special emphasis on explaining the relationship between curvature and topology for Riemannian manifolds with lower curvature bounds.


References [Enhancements On Off] (What's this?)

  • 1. U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990) 355-374. MR 91a:53071
  • 2. C.B. Allendoerfer and A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943) 101-129. MR 4:169e
  • 3. M.T. Anderson, Short geodesics and gravitational instantons, J. Differential Geom. 31 (1990) 265-275. MR 91b:53040
  • 4. M.T. Anderson, Metrics of positive Ricci curvature with large diameter, Manu. Math. 68 (1990) 405-415. MR 91g:53045
  • 5. M.T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990) 429-445. MR 92c:53024
  • 6. M.T. Anderson and J. Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature and $L^{n/2}$ curvature bounded, Geom. and Funct. Anal. 1 (1991), 231-251. MR 92h:53052
  • 7. W. Ballmann, Lectures on spaces of non-positive curvature, Basel: Birkhäuser, 1995. MR 97a:53053
  • 8. W. Ballmann, V. Schroeder and M. Gromov, Manifolds of non-positive curvature, Boston: Birkhäuser, 1985. MR 87h:53050
  • 9. P. Bérard, From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 371-406. MR 89i:58152
  • 10. M. Berger, Riemannian geometry during the second half of the twentieth century, Jahresber. Deutsch. Math.-Verein. 100 (1998), no. 2, 45-208. CMP 98:16
  • 11. M. Berger, Les variétés riemanniennes à courbure positive, Bull. Soc. Math. Belg. 10 (1958) 88-104. See also Bull. Soc. Math. France 87 (1959), 285-292; C. R. Acad. Sci Paris 247 (1958), 1165-1168. MR 23:A1338; MR 20:2754
  • 12. M. Berger, Le variétés riemanniennes 1/4-pincées, C. R. Acad. Sci. Paris 250 (1960) 442-444. MR 22:1865
  • 13. M. Berger, Le variétés riemanniennes 1/4-pincées, Ann. Scuole Norm. Sup. Pisa 14 (1960), 161-170. MR 25:3478
  • 14. M. Berger, On the diameter of some Riemannian manifolds, preprint, Berkeley, 1962.
  • 15. A.L. Besse, Einstein Manifolds, Berlin-Heidelberg: Springer-Verlag, 1987. MR 88f:53087
  • 16. A.L. Besse, Manifolds all of whose geodesics are closed, Berlin-Heidelberg: Springer-Verlag, 1978. MR 80c:53044
  • 17. R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, New York: Academic Press, 1964. MR 29:6401
  • 18. W. Blaschke, Vorlesungen über Differentialgeometrie, Berlin-Heidelberg: Springer Verlag, first edition in 1921. MR 7:391g
  • 19. S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776-797. MR 8:230a
  • 20. O. Bonnet, Sur quelques propriétés des lignes géodésiques, C. R. Acad. Sci. Paris 40 (1855), 1311-1313.
  • 21. E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56. MR 19,1056e
  • 22. E. Cartan, Geometry of Riemannian spaces, Boston: Math. Sci. Press, 1983. First French edition in 1925 and second French edition 1951. MR 85m:53001
  • 23. I. Chavel, Riemannian Geometry-A Modern Introduction, New York: Cambridge University Press, 1993. MR 95j:53001
  • 24. J. Cheeger, Comparison and finiteness theorems for Riemannian manifolds, Ph.D. thesis, Princeton University, 1967.
  • 25. J. Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61-74. MR 41:7697
  • 26. J. Cheeger and T.H. Colding, Lower bounds on Ricci curvature and almost rigidity of warped products, Ann. Math. 144 (1996), 189-237. MR 97h:53038
  • 27. J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below I, J. Differential Geom. 46 (1997), 406-480. MR 98k:53044
  • 28. J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, 1975. MR 56:16538
  • 29. J. Cheeger, Critical points of distance functions and applications to geometry, Geometric Topology: Recent developments, Lecture Notes in Math., 1504, Berlin-Heidelberg: Springer-Verlag, 1991. MR 94a:53075
  • 30. J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971) 119-128. MR 46:2597
  • 31. J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. Math. 96 (1972), 413-443. MR 46:8121
  • 32. J. Cheeger, K. Fukaya, and M. Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992), 372-372. MR 93a:53036
  • 33. S.S. Chern, ed., Global Differential Geometry, 2nd edition, MAA Studies 27, Washington: Mathematical Association of America, 1989. MR 90d:53003
  • 34. B. Chow and D. Yang, Rigidity of nonnegatively curved compact quaternionic-Kähler manifolds, J. Differential Geom. 29 (1989), 361-372. MR 91f:53065
  • 35. S. Cohn-Vossen, Kützeste Wege und Totalkrümming auf Flächen, Comp. Math. 2 (1935), 69-133.
  • 36. T.H. Colding, Ricci curvature and volume convergence, Ann. Math. 145 (1997), 477-501. MR 98d:53050
  • 37. D. DeTurk and J. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. (4) 14 (1981) 249-260. MR 83f:53018
  • 38. P.A.M. Dirac, General Theory of Relativity, First published by Wiley in 1975, reprinted by Princeton University Press 1996. MR 97a:83002
  • 39. P. Dombrowski, 150 years after Gauss' ``Disquisitiones generales circa superficies curvas'', Asterique 62, 1979. MR 80g:01013
  • 40. W. Dyck, Beitrage zur Analysis Situs I. Ein- und zwei-dimensionale Mannifaltigkeiten, Math. Ann. 32 (1888), 457-512.
  • 41. P.B. Eberlein, Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, Chicago University Press, 1996. MR 98h:53002
  • 42. J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. MR 82b:58033
  • 43. J.-H. Eschenburg, Local convexity and nonnegative curvature-Gromov's proof of the sphere theorem, Invent. Math. 84 (1986) 507-522. MR 87j:53080
  • 44. J.-H. Eschenburg and E. Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. and Geom. 2 (1984) 141-151. MR 86h:53042
  • 45. K. Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, Advanced Studies in Pure Math. 18-I (1990) Recent topics in Differential and Analytic Geometry pp. 143-238. MR 92k:53076
  • 46. S. Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque, 157-158 (1988), 191-216. MR 90a:58179
  • 47. S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Berlin-Heidelberg: Springer-Verlag, 1987. MR 88k:53001
  • 48. S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne, J. Math. Pures Appl. 54 (1975), 259-284. MR 56:13128
  • 49. W.-D. Geyer, ed., Jahresbericht der Deutschen Mathematiker-Vereinigung: Jubiläumstagung, 100 Jahre DMV, Bremen 1990, Stuttgart : B.G. Teubner, 1992.
  • 50. G. Gibbons and S. Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978) 430-432.
  • 51. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Berlin-Heidelberg: Springer-Verlag, 1983. MR 86c:35035
  • 52. R. Greene and H.-H. Wu, Lipschitz convergence of Riemannian manifolds, Pac. J. Math. 131 (1988), 119-141. MR 90j:53061
  • 53. R. Greene and S.T. Yau, eds., Differential Geometry, Proc. Symp. Pure Math. 54, vol. 3, Amer. Math. Soc. (1993). MR 94a:00012
  • 54. D. Gromoll, W. Klingenberg, and W. Meyer, Riemansche Geometrie im Grossen, Lecture Notes in Mathematics, 55, Berlin-Heidelberg: Springer-Verlag, 1968 and 1975. MR 51:1651
  • 55. D. Gromoll and W. Meyer, On complete open manifolds of positive curvature, Ann. Math. 90 (1969), 74-90. MR 40:854
  • 56. M. Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978), 231-241. MR 80h:53041
  • 57. M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), 223-230. MR 80h:53040
  • 58. M. Gromov, Curvature, diameter, and Betti numbers, Comment. Math. Helv. 56 (1981), 179-195. MR 82k:53062
  • 59. M. Gromov, Structures métriques pour les variétés riemanniennes (J. Lafontaine and P. Pansu, eds.) Paris: Cedic/Fernand Nathan, 1981. MR 85e:53051
  • 60. M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987) 1-12. MR 88e:53058
  • 61. K. Grove, H. Karcher, and E. Ruh, Group actions and curvature, Invent. Math. 23 (1974), 31-48. MR 52:6609
  • 62. K. Grove and P. Petersen, eds., Comparison Geometry, MSRI publications vol. 30, New York: Cambridge University Press, 1997. MR 97m:53001
  • 63. K. Grove and P. Petersen, Bounding homotopy types by geometry, Ann. Math. (1988), 195-206. MR 90a:53044
  • 64. K. Grove, P. Petersen, and J.-Y. Wu, Geometric finiteness theorems via controlled topology, Invent. Math. 99 (1990) 205-213, Erratum Invent. Math. 104 (1991) 221-222.MR 90k:53075; MR 92b:53065
  • 65. K. Grove and K. Shiohama, A generalized sphere theorem, Ann. Math. (1977), 201-211. MR 58:18268
  • 66. J. Hadamard, Les surfaces à courbures opposées, J. Math. Pures Appl. 4 (1889), 27-73.
  • 67. R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry, Vol. II, International Press (1995), 7-136. MR 97e:53075
  • 68. R.S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), 1-92. MR 99e:53049
  • 69. S.W. Hawking and G.F.R Ellis, The large scale structure of space-time, Cambridge University Press, 1973. MR 54:12154
  • 70. E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup. 11 (1978), 451-470. MR 80i:53026
  • 71. W.V.D. Hodge, The existence theorem for harmonic integrals, Proc. London Math. Soc. 41 (1936), 483-496.
  • 72. H. Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95 (1926), 313-339.
  • 73. H. Hopf, Über die Curvatura integra geschlossener Hyperflächen, Math. Ann. 95 (1926), 340-367.
  • 74. H. Hopf and W. Rinow, Über den Begriff der vollständigen differential-geometrischen Flächen, Comment. Math. Helv. 3 (1931), 209-225.
  • 75. J. Jost and H. Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen, Manuscripta Math. 40 (1982) 27-77. MR 84e:58023
  • 76. A. Kasue, A convergence theorem for Riemannian manifolds and some applications, Nagoya Math. J. 114 (1989), 21-51. MR 90g:53053
  • 77. P. Kirby and L. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. Math. Stud. 88, Princeton Univ. Press (1977). MR 58:31082
  • 78. W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. Math. 69 (1959), 654-666. MR 21:4445
  • 79. W. Klingenberg, Über Riemannsche Mannigfaltigheiten mit positiver Krümmung, Comment. Math. Helv. 35 (1961), 47-54. MR 25:2559
  • 80. W. Klingenberg, Riemannian Geometry, de Gruyter Studies in Mathematics, 1, Berlin, 1982. MR 84j:53001
  • 81. L. Kronecker, Über Systeme von Funktionen mehrer Variablen, Monatsberichte Berlin Akad. (1869), 159-193 and 688-698.
  • 82. H.B. Lawson Jr. and M.-L. Michelsohn, Spin Geometry, Princeton: Princeton University Press, 1989. MR 91g:53001
  • 83. C. Lanczos, Ein vereinfachendes Koordinatensystem für die Einsteinschen Gravitationsgleichungen, Phys. Z. 23 (1922) 537-539.
  • 84. J.M. Lee, Riemannian Manifolds, Graduate Texts in Mathematics, 176, Berlin-Heidelberg: Springer Verlag (1997). MR 98d:53001
  • 85. T. Levi-Civita, The absolute differential calculus, London and Glasgow: Blackie and Son, first Italian ed. 1923, English ed. in 1926, and revised ed. in 1961.
  • 86. A. Lichnerowicz, Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958. MR 23:A1329
  • 87. A. Lichnerowicz, Propagateurs et Commutateurs en relativité générale, Inst. Hautes Études Sci. Publ. Math. No. 10 (1961) 293-343. MR 28:967
  • 88. A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7-9. MR 27:6218
  • 89. H. v. Mangoldt, Über diejenigen Punkte aur positiv gekrummten Flächen, welche die Eigenschaft haben, dass die von ihnen ausgehenden geodätischen Linien nie aufhören, kürzeste Linien zu sien, J. Reine Angew. Math. 91 (1881), 23-52.
  • 90. M.J. Micallef and J.D. Moore, Minimal 2-spheres and the topology of manifolds with positive curvature on totally isotropic 2-planes, Ann. of Math. 127 (1988), 199-227. MR 89e:53088
  • 91. M.J. Micallef and M.Y. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), 649-672. MR 94k:53052
  • 92. J.W. Milnor, Morse Theory, Princeton University Press, Princeton, N.J., 1963. MR 29:634
  • 93. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, Calif., 1973. MR 54:6869
  • 94. N. Mok, The uniformization theorem for compact Kähler manifolds of non-negative holomorphic bi-sectional curvature, J. Diff. Geom. 27 (1988), 179-214. MR 89d:53115
  • 95. J.W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Princeton Univ. Press, Princeton, N.J., 1996. MR 97d:57042
  • 96. M. Morse, Relations between the critical points of a real analytic function of n independent variables, Trans. Amer. Math. Soc. 27 (1925) 345-396.
  • 97. M. Morse, The calculus of variations in the large, AMS Coll. Publ. 18, New York, 1934.
  • 98. S.B. Myers, Riemannian manifolds in the large, Duke Math. J. 1 (1935), 39-49.
  • 99. S.B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941) 401-404. MR 3,18f
  • 100. S.B. Myers and N. Steenrod, The group of isometries of a Riemannian manifold, Ann. Math. 40 (1939), 400-416.
  • 101. P. Nabonnand, Contribution à l'histoire de la théorie des géodésiques au XIX$^{e}$ siècle, Rev. Histoire Math. 1 (1995) 159-200. MR 96j:01027
  • 102. I.G. Nikolaev, Parallel translation and smoothness of the metric of spaces of bounded curvature, Dokl. Akad. Nauk SSSR 250 (1980), 1056-1058. MR 81d:53052
  • 103. B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, New York-London, 1983. MR 85f:53002
  • 104. Y. Otsu, On manifolds of positive Ricci curvature with large diameters, Math. Z. 206 (1991) 255-264. MR 91m:53033
  • 105. M. Özaydin and G. Walschap, Vector bundles with no soul, Proc. Amer. Math. Soc 120 (1994) 565-567. MR 94d:53057
  • 106. R. Penrose, Techniques of differential topology in relativity, CBMS-NSF Regional Conference Series in Applied Mathematics 7, 1973. MR 57:8942
  • 107. G. Perel'man, Proof of the soul conjecture of Cheeger and Gromoll, J. Diff. Geom. 40 (1994), 209-212. MR 95d:53037
  • 108. G. Perel'man, Alexandrov's spaces with curvatures bounded from below II, preprint.
  • 109. G. Perel'man, Manifolds of positive Ricci curvature with almost maximal volume, J. Amer. Math. Soc. 7 (1994) 299-305. MR 94f:53077
  • 110. S. Peters, Cheeger's finiteness theorem for diffeomorphism classes of manifolds, J. Reine Angew. Math. 349 (1984) 77-82. MR 85j:53046
  • 111. S. Peters, Convergence of Riemannian manifolds, Compositio. Math. 62 (1987), 3-16. MR 88i:53076
  • 112. P. Petersen, Riemannian geometry, Graduate Texts in Mathematics, 171, Springer-Verlag, New York, 1998. MR 98m:53001
  • 113. P. Petersen, S. Shteingold and G. Wei, Comparison geometry with integral curvature bounds, Geom. Funct. Anal. 7 (1997), 1011-1030. MR 99c:53022
  • 114. P. Petersen and C. Sprouse, Integral curvature bounds, distance estimates and applications, J. Diff. Geom. 50 (1998), 269-298.
  • 115. P. Petersen and G. Wei, Relative volume comparison with integral Ricci curvature bounds, Geom. Funct. Anal. 7 (1997) 1031-1045. MR 99c:53023
  • 116. P. Petersen and G. Wei, Geometry and analysis on manifolds with integral Ricci curvature bounds, preprint from UCLA. To appear in Trans. Amer. Math. Soc.
  • 117. P. Petersen, G. Wei, and R. Ye, Controlled geometry via smoothing, to appear in Comm. Math. Helv.
  • 118. A. Preissmann, Quelques propriétés globales des espaces de Riemann, Comment. Math. Helv. 15 (1943), 175-216. MR 6:20g
  • 119. H.E. Rauch, A contribution to differential geometry in the large, Ann. Math. 54 (1951), 38-55. MR 13:159b
  • 120. G. de Rham, Differentiable Manifolds, Berlin-Heidelberg: Springer-Verlag, 1984. MR 85m:58005
  • 121. B. Riemann, Über die Hypothesen welche der Geometrie zu Grunde liegen, Habilitationschrift 1854; Gött. Abh. 13, 1868; Gesamm. Werke, 2nd ed. Leipzig, 1892. Edited with comments by H. Weyl, Berlin, 1919 and revised in 1923.
  • 122. X. Rong, The almost cyclicity of the fundamental groups of positively curved manifolds, Invent. Math. 126 (1996) 47-64. And Positive curvature, local and global symmetry, and fundamental groups, preprint, Rutgers, New Brunswick. MR 97g:53045
  • 123. X. Rong, A Bochner Theorem and Applications, Duke Math. J. 91 (1998), 381-392. MR 99e:53043
  • 124. E. Ruh, Almost flat manifolds, J. Diff. Geom. 17 (1982), 1-14. MR 84a:53047
  • 125. I.J. Schoenberg, Some applications of the calculus of variations to Riemannian geometry, Ann. Math. 33 (1932) 485-495.
  • 126. K. Shiohama, T. Sakai and T. Sunada, Eds., Curvature and Topology of Riemannian Manifolds, Lecture Notes in Mathematics 1201, Berlin-Heidelberg: Springer-Verlag, 1986. MR 87i:53001
  • 127. M. Spivak, A Comprehensive Introduction to Differential Geometry, vols. I-V, Wilmington: Publish or Perish, 1979. MR 82g:53003a; MR 82g:53003b; MR 82g:53003c; MR 82g:53003d; MR 82g:53003e
  • 128. J.J. Stoker, Differential Geometry, New York: Wiley-Interscience, 1989. MR 90f:53002
  • 129. S. Stolz, Simply connected manifolds with positive scalar curvature, Ann. Math. 136 (1992), 511-540. MR 93i:57033
  • 130. J.L. Synge, The first and second variations of the length-integral in Riemann spaces, Proc. London Math. Soc. 25 (1926), 247-264.
  • 131. J.L. Synge, On the neighborhood of a geodesic in Riemannian space, Duke Math. J. 1 (1935), 527-537.
  • 132. J.L. Synge, On the connectivity of spaces of positive curvature, Quart. J. Math. 7 (1936), 316-320.
  • 133. S. Tachibana, A theorem on Riemannian manifolds of positive curvature operator, Proc. Japan Acad. 50 (1974), 301-302. MR 51:1667
  • 134. V.A. Toponogov, Riemannian spaces having their curvature bounded below by a positive number, Uspehi Mat. Nauk 14 (1959), 87-130; Dokl. Akad. Nauk SSSR 120 (1958), 719-721. MR 21:2278; MR 20:6139
  • 135. V.A. Toponogov, Dependence between curvature and topological structure of Riemann spaces of even dimension, Soviet Math. Dokl. 1 (1961), 943-945. MR 25:3476
  • 136. V.A. Toponogov, The metric structure of Riemannian spaces of nonnegative curvature which contain straight lines, Sibirsk. Mat. Z. 5 (1964), 1358-1369; Dokl. Akad. Nauk. SSSR 127 (1959), 977-979. MR 32:3017; MR 21:7520
  • 137. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, New York: Springer-Verlag, 1983. MR 84k:58001
  • 138. A. Weinstein, On the homotopy type of positively pinched manifolds, Archiv Math. 18 (1967), 523-524. MR 36:3376
  • 139. R. Weitzenbock, Invariantentheorie, Groningen: Nordhoff, 1923.
  • 140. F.H. Wilhelm, On intermediate Ricci curvature and the fundamental group, Illinois J. of Math. 41 (1997), 488-494. MR 98h:53065
  • 141. H.H. Wu, The Bochner Technique in Differential Geometry, Mathematical Reports vol. 3, part 2, London: Harwood Academic Publishers, 1988.MR 91h:58031

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 53C20

Retrieve articles in all journals with MSC (1991): 53C20


Additional Information

Peter Petersen
Affiliation: Department of Mathematics, University of California, Los Angeles, CA 90095-1555
Email: petersen@math.ucla.edu

DOI: https://doi.org/10.1090/S0273-0979-99-00787-9
Keywords: Riemannian geometry
Received by editor(s): November 20, 1997
Received by editor(s) in revised form: October 20, 1998
Published electronically: May 24, 1999
Additional Notes: Supported in part by the NSF
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society