Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: G. Edgar
Title: Integral, probability, and fractal measures
Additional book information: Springer-Verlag, New York, 1998, x + 286 pp., ISBN 0-387-98205-1, $39.95

References [Enhancements On Off] (What's this?)

  • 1. M. Arbeiter & N. Patzschke, Random self-similar multifractals, Math. Nachr. 181 (1996), 5-42. MR 97j:28016
  • 2. M. Barnsley, Fractals Everywhere, Academic Press, Boston, MA, 1988. MR 90e:58080
  • 3. T. Bedford, Crinkly Curves, Markov Partitions and Box Dimensions in Self-Similar Sets, Ph.D. dissertation, University of Warwick, 1984.
  • 4. A. Besicovitch, On the fundamental properties of linearly measurable plane sets of points, Math. Ann. 98 (1928), 422-464.
  • 5. A. Besicovitch, On the fundamental properties of linearly measurable plane sets of points II, Math. Ann. 115 (1938), 296-329.
  • 6. A. Besicovitch, On the fundamental properties of linearly measurable plane sets of points III, Math. Ann. 116 (1939), 349-357.
  • 7. T. Bedford & A. Fisher, Analogues of the Lebesgue density theorem for fractal sets of reals and integers., Proc. Lond. Math. Soc. 64 (1992), 95-124. MR 92j:58058
  • 8. A. S. Besicovitch & P. A. P. Moran, The measure of product and cylinder sets, Jour. Lond. Math. Soc. 20 (1945), 110-120. MR 8:18f
  • 9. G. Brown, G. Michon & J. Peyriére, On the multifractal analysis of measures, J. Statist. Phys. 66 (1992), 775-790. MR 93c:58120
  • 10. C. Carathéodory, Über das lineare Maß von Punktmengen - eine Verallgemeinerung des Längenbegriffs, Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse (1914), 404-426.
  • 11. R. Cawley & R. D. Mauldin, Multifractal decomposition of Moran fractals, Advances in Mathematics 92 (1992), 196-236. MR 93b:58085
  • 12. C. D. Cutler, The Hausdorff distribution of finite measures in Euclidean space, Can. J. Math. 38 (1986), 1459-1484. MR 88b:28013
  • 13. C. D. Cutler, Measure disintegrations with respect to $\sigma $-stable monotone indices and pointwise representation of packing dimension, Proceedings of the 1990 Measure Theory Conference at Oberwolfach. Supplemento Ai Rendiconti del Circolo Mathematico di Palermo, Ser. II, No. 28 (1992), 319-340. MR 93h:28005
  • 14. C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergod. Theory and Dynam. Syst. 10 (1990), 451-462. MR 91h:58063
  • 15. G. Edgar, Measure, Topology, and Fractal Geometry, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1990. MR 92a:54001
  • 16. G. Edgar, Classics on Fractals, Addison-Wesley, Menlo Park, CA, 1992.
  • 17. G. A. Edgar & R. D. Mauldin, Multifractal Decompositions of Digraph Recursive Fractals, Proc. London Math. Soc. 65 (1992), 604-628. MR 93h:28010
  • 18. K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985. MR 88d:28001
  • 19. K. J. Falconer, Random fractals, Math. Proc. Camb. Phil. Soc. 100 (1986), 559-582. MR 88e:28005
  • 20. K. J. Falconer, Fractal Geometry-Mathematical Foundations and Applications, John Wiley & Sons, 1990. MR 92j:28008
  • 21. K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, 1997. MR 99f:28013
  • 22. K. J. Falconer & J. D. Howroyd, Projection theorems for box and packing dimensions, Math. Proc. Cambridge Philos. Soc. 119 (1996), 287-295. MR 96i:28006
  • 23. K. J. Falconer & J. D. Howroyd, Packing dimensions of projections and dimension profiles, Math. Proc. Cambridge Philos. Soc. 121 (1997), 269-286. MR 98j:28004
  • 24. K. J. Kenneth & P. Mattila, The packing dimension of projections and sections of measures, Math. Proc. Cambridge Philos. Soc. 119 (1996), 695-713. MR 96m:28003
  • 25. K. J. Falconer & M. Järvenpää, Packing dimensions of sections of sets, Math. Proc. Cambridge Philos. Soc. 125 (1999), 89-104. MR 99g:28012
  • 26. H. Federer, Geometric Measure Theory, Die Grundlehren der Mathematischen Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41:1976
  • 27. J. Geronimo & D. Hardin, An exact formula for the measure dimensions associated with a class of piecewise linear maps, Constr. Approx. 5 (1989), 89-98. MR 90d:58076
  • 28. S. Graf, Statistically self-similar fractals, Probab. Th. Rel. Fields 74 (1987), 357-394. MR 88c:60038
  • 29. H. Haase, On the dimension of product measures, Mathematika 37 (1990), 316-323. MR 92b:28007
  • 30. F. Hausdorff, Dimension und äußeres Maß, Mathematische Annalen 79 (1918), 157-179.
  • 31. T. Hawkins, Lebesgue's Theory of Integration. Its Origins and Development, Chelsea, 1975. MR 54:2904
  • 32. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia & B. J. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33 (1986), 1141-1151. MR 87h:58125a
  • 33. X. Hu & S. J. Taylor, Fractal properties of products and projections of measures in $\mathbb{R} ^{d}$, Math. Proc. Camb. Phil. Soc. 115 (1994), 527-544. MR 95f:28013
  • 34. J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. MR 82h:49026
  • 35. K.-S. Lau & S.-M. Ngai, Multifractal measures and a weak separation condition, Advances in Mathematics 141 (1999), 45-96. MR 2000d:28010
  • 36. K.-S. Lau & S.-M. Ngai, $L^{q}$-spectrum of Bernoulli convolutions associated with the golden ratio, Studia Math. 131 (1998), 225-251. MR 99f:28008
  • 37. B. Mandelbrot, Les Objects fractales: forme, hasard et Dimension, Flammarion, 1975.
  • 38. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, 1982. MR 84h:00021
  • 39. P. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, San Diego, CA, 1994. MR 96b:28007
  • 40. J. Marstrand, Some fundamental geometric properties of plane sets of fractional dimension, Proc. Lond. Math. Soc. 4 (1954), 257-302. MR 16:121g
  • 41. J. M. Marstrand, The dimension of Cartesian product sets, Proc. Lond. Math. Soc. 5 (1954), 198-206. MR 15:691g
  • 42. J. Marstrand, Hausdorff two-dimensional measure in $3$-space, Proc. Lond. Math. Soc. 11 (1961), 91-108. MR 23:A994
  • 43. J. Marstrand, The $(\phi ,s)$ regular subsets of $n$-space, Trans. Amer. Math. Soc. 113 (1964), 369-392. MR 29:3613
  • 44. P. Mattila, Hausdorff $m$ regular and rectifiable sets in $n$-space, Trans. Amer. Math. Soc. 205 (1975), 263-274. MR 50:10209
  • 45. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge University Press, 1995. MR 96h:28006
  • 46. C. McMullen, The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J. 96 (1984), 1-9. MR 86h:11061
  • 47. P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proceedings of the Cambridge Philosophical Society 42 (1946), 15-23. MR 7:278f
  • 48. P. Mörters & D. Preiss, Tangent measure distributions of fractals measures, Math. Ann. 312 (1998), 53-93. MR 99i:28013
  • 49. R.D. Mauldin & M. Urbanski, Dimension and measures in infinite iterated function systems, Proc. Lond. Math. Soc. 73 (1996), 105-154. MR 97c:28020
  • 50. R. D. Mauldin & S. C. Williams, Random recursive constructions: Asymptotic geometric and topological properties, Trans. Am. Math. Soc. 295 (1986), 325-346. MR 87j:60027
  • 51. R. D. Mauldin & S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Am. Math. Soc. 309 (1988), 811-829. MR 89i:28003
  • 52. L. Olsen, A multifractal formalism, Advances in Mathematics 116 (1995), 82-196. MR 97a:28006
  • 53. L. Olsen, Random Geometrically Graph Directed Self-Similar Multifractals, Pitman Research Notes in Mathematics Series, Vol. 307, Longman Scientific & Technical, 1994. MR 95j:28006
  • 54. Y. Peres, The Packing Measure of Self-Affine Carpets, Math. Proc. Cambridge Phil. Soc. 115 (1994), 437-450. MR 95e:28001
  • 55. Y. Pesin, Dimension Theory in Dynamical Systems. Contemporary Views and Applications, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. MR 99b:58003
  • 56. D. Preiss, Geometry of measures in $\mathbb{R} ^{n}$: Distribution, rectifiability, and densities, Ann. of Math. 125 (1987), 537-643. MR 88d:28008
  • 57. Y. Peres & W. Schlag, Smoothness of projections, Bernoulli convolutions and the dimension of exceptions, preprint (1998).
  • 58. Y. Peres & B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof, Math. Res. Lett. 3 (1996), 231-239. MR 97f:28006
  • 59. X. S. Raymond & C. Tricot, Packing regularity of sets in $n$-space, Math. Proc. Camb. Phil. Soc. 103 (1988), 133-145. MR 88m:28002
  • 60. C. A. Rogers, Hausdorff Measures, Second Edition, Cambridge University Press, London-New York, 1998. MR 2000b:28009
  • 61. B. Solomyak, On the random series $\sum -\lambda \sp{n}$ (an Erdös problem), Ann. of Math. 142 (1995), 611-625. MR 97d:11125
  • 62. K. Simon & B. Solomyak, Correlation dimension for self-similar Cantor sets with overlaps, Fund. Math. 155 (1998), 293-300. MR 99g:28036
  • 63. S. J. Taylor & C. Tricot, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679-699. MR 87a:28002
  • 64. C. Tricot, Two definitions of fractional dimension, Math. Proc. Camb. Phil. Soc. 91 (1982), 57-74. MR 84d:28013
  • 65. C. Tricot, Curves and Fractal Dimension, Springer-Verlag, New York, 1995. MR 95i:28005
  • 66. L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. & Dynam. Sys. 2 (1982), 109-124. MR 84h:58087

Review Information:

Reviewer: Lars Olsen
Affiliation: University of St. Andrews
Email: lo@st-and.ac.uk
Journal: Bull. Amer. Math. Soc. 37 (2000), 481-498
MSC (2000): Primary 28A80
Published electronically: June 27, 2000
Review copyright: © Copyright 2000 American Mathematical Society
American Mathematical Society