Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Paul C. Roberts
Title: Multiplicities and Chern classes in local algebra
Additional book information: Cambridge Tracts in Mathematics, vol. 133, Cambridge University Press, Cambridge, 1998, xi+303 pp., ISBN 0-521-47316-0, $59.95

References [Enhancements On Off] (What's this?)

  • [Aus] M. Auslander, Modules over unramified regular local rings, Proc. International Congress of Mathematics in Stockholm 1962, Uppsala, Almqvist and Wiksells (1963), 230-234. MR 31:206
  • [Bass] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 27:3669
  • [BFM] P. Baum, W. Fulton, and R. MacPherson, Riemann-Roch for singular varieties, Publ. Math. I.H.E.S. 45 (1975), 101-145. MR 54:317
  • [Ber] P. Berthelot, Altération de variétés algébriques [d'après de Jong], Séminaire Bourbaki n. 815 (1996). MR 98m:14021
  • [Bou] J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), 65-68. MR 88a:14005
  • [Bru] W. Bruns, Tight closure, Bull. Amer. Math. Soc. 33 (1996), 447-458. MR 97d:13003
  • [BruH] W. Bruns and J. Herzog, Cohen-Macaulay Rings, vol. 39, Cambridge studies in advanced mathematics, 1993. MR 95h:13020
  • [DeJ] A. de Jong, Smoothness, semi-stability, and alterations, Publ. Math. I.H.E.S. 83 (1996), 51-93. MR 98e:14011
  • [Du1] S. P. Dutta, Frobenius and multiplicities, J. Algebra 85 (1983), 424-448. MR 85f:13022
  • [Du2] -, On the canonical element conjecture, Trans. Amer. Math. Soc. 299 (1987), 803-811. MR 87m:13028
  • [DHM] S. P. Dutta, M. Hochster, and J. E. McLaughlin, Modules of finite projective dimension with negative intersection multiplicities, Invent. Math. 79 (1985), 253-291. MR 86h:13023
  • [EvG] E. G. Evans and P. Griffith, The syzygy problem, Annals of Math. 114 (1981), 323-333. MR 83i:13006
  • [F] W. Fulton, Intersection Theory, Springer-Verlag, Berlin, 1984. MR 85k:14004
  • [FM] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31, 1981. MR 83a:55015
  • [GS] H. Gillet and C. Soulé, K-théorie et nullité des multiplicités d'intersection, C. R. Acad. Sci. Paris Série I no. 3 t. 300 (1985), 71-74. MR 86k:13027
  • [HaMo] C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214 (1993), 119-135. MR 94f:13008
  • [Heit] R. Heitmann, A counterexample to the rigidity conjecture for rings, Bull. Amer. Math. Soc. New Series 29 (1993), 94-97. MR 93m:13007
  • [Ho1] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25-43. MR 50:2149
  • [Ho2] -, Topics in the homological theory of modules over commutative rings, C.B.M.S. Regional Conf. Ser. in Math. No. 24, Amer. Math. Soc., Providence, R.I., 1975. MR 51:8096
  • [Ho3] -, Canonical elements in local cohomology modules and the direct summand conjecture, J. of Algebra 84 (1983), 503-553. MR 85j:13021
  • [HH1] -, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31-116. MR 91g:13010
  • [HH2] -, Infinite integral extensions and big Cohen-Macaulay algebras, Annals of Math. 135 (1992), 53-89. MR 92m:13023
  • [HH3] -, Applications of the existence of big Cohen-Macaulay algebras, Advances in Math. 113 (1995), 45-117. MR 96d:13014
  • [HR] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115-175. MR 50:311
  • [Hu] C. Huneke, Tight Closure and Its Applications, Proc. of the CBMS Conference held at Fargo, North Dakota, July, 1995, C.B.M.S. Regional Conference Series, Amer. Math. Soc., Providence, R.I., 1996. MR 96m:13001
  • [PS1] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S. (Paris) 42 (1973), 323-395. MR 51:10330
  • [PS2] -, Syzygies et multiplicités, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1421-1424. MR 50:2152
  • [Rang] N. Ranganathan, Splitting in module-finite extension rings and the vanishing conjecture for maps of Tor, Thesis, University of Michigan, expected 2000.
  • [Ro1] P. Roberts, Two applications of dualizing complexes over local rings, Ann. Sci. Ec. Norm. Sup. 9 (1976), 103-106. MR 53:2926
  • [Ro2] -, Cohen-Macaulay complexes and an analytic proof of the new intersection conjecture, J. of Algebra 66 (1980), 225-230. MR 82e:14009
  • [Ro3] -, The vanishing of intersection multiplicities of perfect complexes, Bull. Amer. Math. Soc. 13 (1985), 127-130. MR 87c:13030
  • [Ro4] -, Le théorème d'intersection, C. R. Acad. Sc. Paris Sér. I 304 (1987), 177-180. MR 89b:14008
  • [Ro5] -, Intersection theorems, in Commutative Algebra, Math. Sci. Research Inst. Publ. 15, Springer-Verlag, New York-Berlin-Heidelberg, 1989, pp. 417-436. MR 90j:13024
  • [Se] J.-P. Serre, Algèbre locale. Multiplicités, Lecture Notes in Mathematics 11, Springer-Verlag, New York, 1965. MR 34:1352

Review Information:

Reviewer: Melvin Hochster
Affiliation: University of Michigan, Ann Arbor
Email: hochster@math.lsa.umich.edu
Journal: Bull. Amer. Math. Soc. 38 (2001), 83-92
MSC (2000): Primary 13-XX
Published electronically: October 2, 2000
Review copyright: © Copyright 2000 American Mathematical Society
American Mathematical Society