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A fundamental problem in control theory is to design controllers which give
satisfactory performance in the presence of uncertainties such as unknown model
parameters and disturbances which enter the system dynamics. H∞ control theory
originated in an effort to codify classical control methods where frequency response
functions are shaped to meet certain performance objectives. Linear H∞ control
theory has developed extensively since the early 1980s, and effective numerical
methods have been developed for practical implementation in engineering applica-
tions. A major remaining issue is to develop a corresponding theory for nonlinear
control systems. This book presents a systematic account of recent progress in this
regard by the authors and others.

Linear H∞ control theory can be considered in either a frequency domain, input-
output formulation or a time domain, state space formulation. Mathematical tools
of the linear theory involve such techniques from operator theory and complex
function theory as Nevanlinna-Pick interpolation and inner-outer factorizations.
Matrix Riccati equations also have a key role. In contrast, nonlinear H∞ control
theory is formulated in the time domain and depends on ideas and methods of
differential games and nonlinear partial differential equations (or partial differential
inequalities).

The book considers a standard nonlinear H∞ control formulation, as follows.
Let xt denote the system state, ut a control, and wt a disturbance at time t ≥ 0.
The state dynamics are

ẋt = A(xt) +B1(xt)wt +B2(xt)ut,(1)

with A(x), B1(x), B2(x) matrices of appropriate dimensions. The disturbance
wt is not known by the controller. The control ut is chosen based on available
information. Two cases are considered, called state-feedback and output-feedback
control. The control must be chosen such that the undisturbed system, with wt ≡ 0,
is asymptotically stable to 0. Moreover, for suitable γ > 0 the disturbed system
must be γ-dissipative in the following sense. Consider a performance measure zt,
with

zt = C1(xt) +D1(xt)ut(2)

where D1(x)D1(x)′ > 0. It is required that there exists β(x) ≥ 0 with β(0) = 0
such that: for every T > 0, x0 and w. ∈ L2[0, T ]

1
2

∫ T

0

|zs|2ds ≤
1
2
γ2

∫ T

0

|ws|2ds+ β(x0).(3)

The infimum of such γ is the H∞ norm.
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State-feedback H∞ control.
Assume that the state xt can be observed by the controller, and take ut = K(xt)

where K(·) is a state-feedback controller. In linear state-feedback control theory
the matrices A,B1, · · · in equations (1) and (2) are constants, and K(x) is linear.
If x0 = 0, then β(x0) = 0 and inequality (3) says that γ is an upper bound for
the L2[0, T ] operator norm of the linear map w. → z., for each T . In passing to
the frequency domain, the operator norm becomes a H∞ norm. The name “H∞
control” has persisted in the nonlinear setting even though this frequency domain
interpretation is no longer valid.

Given a feedback controller K and initial state x0, let

JT = 1
2

∫ T
0

[
|zs|2 − γ2|ws|2

]
ds

VK(x0) = supT supw. JT .

Finiteness of VK(x0) for all x0 implies the dissipation inequality (3) with β ≥ VK .
The function VK is called available storage. It satisfies, in the viscosity sense,
a first order nonlinear PDE of Hamilton-Jacobi-Bellman (HJB) type. There is a
more easily verified sufficient condition for (3) which requires some storage func-
tion (not necessarily the available storage VK) satisfying in the viscosity sense a
corresponding partial differential inequality.

If γ exceeds the H∞ norm, one should expect many state feedback controllers
K with the required stability and γ-dissipation properties. The following provides
a recipe for one such K, called the central controller. Let

V (x0) = inf
K
VK(x0).

Under suitable technical assumptions V (x0) is the value of a corresponding zero-
sum two player differential game, in which the minimizing player chooses ut and the
maximizing player chooses the disturbance wt. Moreover, V is a viscosity solution
of the Isaacs PDE. Under suitable regularity assumptions, the central controller
K∗(x) is obtained by taking argmax over possible controls u in the Isaacs equation.

Output-feedback H∞ control.
The main part of the book is concerned with the situation when the state xt

cannot be observed. Instead, at time t the control ut is chosen based on observations
ys for 0 ≤ s ≤ t, where

ys = C2(xs) +D2(xs)ws , D2D
′
2 > 0.(4)

The controller K is now a casual map y. → u. An essential feature of the authors’
approach is to recast the output-feedback problem in a state space setting, which
can then be analyzed by PDE/differential game methods which are formally similar
to those for the state feedback case. However, in the reformulated problem the
“state” is not xt, which can’t be observed. Instead it is an “information state”
function pt, defined as follows:

pt(x) = sup
w.

{p0(x0) + Jt : xt = x}(5)

where the sup is taken over all disturbances consistent with (4), and p0 is an initial
information state with p0(x) ≤ 0, p0(0) = 0. Intuitively, the information state
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function contains all past information relevant to future evolution of the output-
feedback control system. The information state evolves forward in time according
to an HJB partial differential equation, interpreted in the viscosity sense.

A key observation is that the γ-dissipation property (3) is equivalent to 〈pT 〉 ≤ 0
for all T and y. ∈ L2[0, T ], where

〈pT 〉 = sup
x
pT (x).

An information state value function W (p0) is defined as

W (p0) = inf
K

sup
T,y.

〈pT 〉,

where K is an information state feedback controller (ut = K(pt)). Formally, W (p)
satisfies an infinite dimensional nonlinear PDE. However, this PDE does not fit
well existing infinite dimensional viscosity solution theory. One can interpret it as
the Isaacs PDE for a differential game, with pt as state and ut, yt controls chosen
by the minimizing and maximizing players respectively. Under enough technical
assumptions a central information state controller K∗(p) is found in a way formally
like that for the state feedback central controller K∗(x). It has the property that
K∗(pe) = 0 where pe is an equilibrium information state, which remains constant
in time if ut = yt ≡ 0. More detailed information about pe is found in particular
cases. For instance, if D2(x) is the identity matrix (a “two block system” case) and
if A−B1C2 is a hyperbolic vector field, then pe(x) is δ-function like on its unstable
manifold and vanishes elsewhere.

Another technique is that of inner-outer factorization, in which the inner factor
is dissipative and the outer factor satisfies a weak invertibility condition. A recipe
for the factors, in the information state context, is provided.

For bilinear systems, the information states pt(x) are quadratic in x and the
information-state level analysis becomes finite dimensional. In particular, for linear
systems the analysis reduces to questions about matrix Riccati equations.

Another way to avoid the infinite dimensional PDE framework is to consider
“certainty-equivalent” controllers ut = K(x̂t), where x̂t is an estimate for the un-
known state xt and K is a state-feedback controller. The certainty equivalent con-
troller chooses K(x) = K∗(x), an optimal state-feedback controller, and x̂t = x̄(pt),
where

x̄(p) = argmax
x

{p(x) + V (x)}(6)

and V (x) is the state-feedback value function. This corresponds to considering the
solution Ŵ (p) = 〈p + V 〉 of the infinite dimensional HJB equation for W (p). Un-
der suitable assumptions, including uniqueness of the argmax in (6), the certainty
equivalent and central information state controllers agree.

This book provides a definitive account of the information state approach to
nonlinear H∞ control. The introductory Chapter 1 gives a valuable, less technical
overview as well as historical perspective. The book is also a good resource for an
entree to basic concepts and techniques of nonlinear H∞ control, in both state-
feedback and output-feedback settings.
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