Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Harmonic analysis with respect to heat kernel measure


Author: Brian C. Hall
Journal: Bull. Amer. Math. Soc. 38 (2001), 43-78
MSC (2000): Primary 22E30, 81S30, 53D50, 60H30; Secondary 43A32, 46E20, 58J25
DOI: https://doi.org/10.1090/S0273-0979-00-00886-7
Published electronically: September 26, 2000
MathSciNet review: 1803077
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

This paper surveys developments over the last decade in harmonic analysis on Lie groups relative to a heat kernel measure. These include analogs of the Hermite expansion, the Segal-Bargmann transform, and the Taylor expansion. Some of the results can be understood from the standpoint of geometric quantization. Others are intimately related to stochastic analysis.


References [Enhancements On Off] (What's this?)

  • [AHS] S. Albeverio, B. Hall, and A. Sengupta, The Segal-Bargmann transform for two-dimensional Euclidean quantum Yang-Mills, Infinite Dimensional Anal. Quantum Prob. 2 (1999), 27-49.
  • [ALMMT] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão, and T. Thiemann, Coherent state transforms for spaces of connections, J. Funct. Anal. 135 (1996), 519-551. MR 97d:58031
  • [BSZ] J. Baez, I. Segal, and Z. Zhou, Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Univ. Press, Princeton, NJ, 1992. MR 93m:81002
  • [B] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Part I, Comm. Pure Appl. Math. 14 (1961), 187-214. MR 28:486
  • [Bi] P. Biane, Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems, J. Funct. Anal. 144 (1997), 232-286. MR 97k:22011
  • [De] T. Deck, Hida distributions on compact Lie groups, Infinite Dimensional Anal. Quantum Prob., to appear.
  • [Dr] B. Driver, On the Kakutani-Itô-Segal-Gross and Segal-Bargmann-Hall isomorphisms, J. Funct. Anal. 133 (1995), 69-128. MR 97j:22020
  • [DG] B. Driver and L. Gross, Hilbert spaces of holomorphic functions on complex Lie groups, In: New trends in stochastic analysis (K. Elworthy, S. Kusuoka, and I. Shigekawa, Eds.), World Scientific, Singapore, 1997, pp. 76-106. MR 2000h:46029
  • [DH] B. Driver and B. Hall, Yang-Mills theory and the Segal-Bargmann transform, Commun. Math. Phys. 201 (1999), 249-290. MR 2000c:58064
  • [E] M. Englis, Asymptotic behaviour of reproducing kernels of weighted Bergman spaces, Trans. Amer. Math. Soc. 349 (1997), 3717-3735. MR 97k:46033
  • [FJ] M. Flensted-Jensen, Spherical functions on a real semisimple Lie group. A method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106-146. MR 80f:43022
  • [F] G. Folland, Harmonic analysis in phase space, Princeton Univ. Press, Princeton, N.J., 1989. MR 92k:22017
  • [FS] G. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), 207-238. MR 98f:42006
  • [Go1] M. Gordina, Holomorphic functions and the heat kernel measure on an infinite dimensional complex orthogonal group, Potential Anal., 12 (2000), 325-357.
  • [Go2] M. Gordina, Heat kernel analysis and Cameron-Martin subgroup for infinite dimensional groups, J. Funct. Anal. 171 (2000), 192-232. CMP 2000:08
  • [G1] L. Gross, Abstract Wiener spaces, In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probablility, Vol. II, Univ. of California Press, 1967. MR 35:3027
  • [G2] L. Gross, Uniqueness of ground states for Schrödinger operators over loop groups, J. Funct. Anal. 112 (1993), 373-441. MR 94h:58180
  • [G3] L. Gross, Analysis on loop groups, In: Stochastic analysis and applications in physics (Funchal, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 449, Kluwer Acad. Publ., Dordrecht, 1994, pp. 99-118. MR 96j:58023
  • [G4] L. Gross, Harmonic functions on loop groups, In: Séminaire Bourbaki Vol. 1997/98, Astérisque No. 252, (1998), Exp. No. 846, 5, 271-286. MR 2000c:60084
  • [G5] L. Gross, The homogeneous chaos over compact Lie groups, In: Stochastic processes: A Festschrift in Honour of Gopinath Kallianpur (S. Cambanis et al., Eds.), Springer, New York, 1993, pp. 117-123. MR 97j:22021
  • [G6] L. Gross, Harmonic analysis for the heat kernel measure on compact homogeneous spaces, In: Stochastic analysis on infinite-dimensional spaces (Baton Rouge, LA, 1994), (H. Kunita and H.-H. Kuo, Eds.), Pitman Res. Notes Math. Ser., 310, Longman Sci. Tech., Harlow, 1994, pp. 99-110. MR 97g:58178
  • [G7] L. Gross, Some norms on universal enveloping algebras, Canad. J. Math. 50 (1998), 356-377. MR 2000b:17015
  • [G8] L. Gross, A local Peter-Weyl theorem, Trans. Amer. Math. Soc. 352 (2000), 413-427. MR 2000c:22007
  • [G9] L. Gross, Heat kernel analysis on Lie groups, preprint.
  • [GM] L. Gross and P. Malliavin, Hall's transform and the Segal-Bargmann map, In: Itô's stochastic calculus and probability theory, (M.Fukushima, N. Ikeda, H. Kunita, and S. Watanabe, Eds.), Springer-Verlag, Berlin/New York, 1996, pp. 73-116. MR 98j:22010
  • [GStenz] V. Guillemin and M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation, J. Differential Geom. 34 (1991), 561-570. MR 93e:32018
  • [GStern] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538. MR 83m:58040
  • [H1] B. Hall, The Segal-Bargmann ``coherent state'' transform for compact Lie groups, J. Funct. Anal. 122 (1994), 103-151. MR 95e:22020
  • [H2] B. Hall, The inverse Segal-Bargmann transform for compact Lie groups, J. Funct. Anal. 143 (1997), 98-116. MR 98e:22004
  • [H3] B. Hall, Phase space bounds for quantum mechanics on a compact Lie group, Comm. Math. Phys. 184 (1997), 233-250. MR 98g:81108
  • [H4] B. Hall, Quantum mechanics in phase space, In: Perspectives on quantization (L. Coburn and M. Rieffel, Eds), Contemp. Math., Vol. 214, Amer. Math. Soc., Providence, RI, 1998, pp. 47-62. MR 99e:22015
  • [H5] B. Hall, A new form of the Segal-Bargmann transform for Lie groups of compact type, Canad. J. Math. 51 (1999), 816-834. MR 2000g:22013
  • [H6] B. Hall, Holomorphic methods in analysis and mathematical physics, In: First Summer School in Analysis and Mathematical Physics (S. Pérez-Esteva and C. Villegas-Blas, Eds.), Contemp. Math., Vol. 260, Amer. Math. Soc., Providence, RI, 2000, pp. 1-59.
  • [H7] B. Hall, Coherent states, Yang-Mills theory, and reduction, preprint. [http://xxx.lanl.gov, quant-ph/9911052]
  • [H8] B. Hall, Geometric quantization and the generalized Segal-Bargmann transform, in preparation.
  • [HS] B. Hall and A. Sengupta, The Segal-Bargmann transform for path-groups, J. Funct. Anal. 152 (1998), 220-254. MR 99a:58020
  • [He] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, San Diego, 1978. MR 80k:53081
  • [Hi1] O. Hijab, Hermite functions on compact Lie groups. I, J. Funct. Anal. 125 (1994), 480-492. MR 96e:22017
  • [Hi2] O. Hijab, Hermite functions on compact Lie groups. II, J. Funct. Anal. 133 (1995), 41-49. MR 96m:22015
  • [Ho] G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, 1965. MR 34:7696
  • [Ki] A. Kirillov, Geometric quantization, In: Dynamical Systems IV (V. Arnold and S. Novikov, Eds.), Encyclopaedia of Mathematical Sciences, Vol. 4, Springer-Verlag, New York, Berlin, 1990.
  • [KR] K. Kowalski and J. Rembielinski, Coherent states for a particle on a sphere, preprint. [http://xxx.lanl.gov, quant-ph/9912094]
  • [L1] N. Landsman, Rieffel induction as generalized quantum Marsden-Weinstein reduction, J. Geom. Phys. 15 (1995), 285-319. MR 96k:81116a
  • [L2] N. Landsman, Mathematical topics between classical and quantum mechanics, Springer-Verlag, New York, 1998. MR 2000g:81081
  • [LS] L. Lempert and R. Szoke, Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds, Math. Ann. 290 (1991), 689-712. MR 92m:32022
  • [Lo] R. Loll, Non-perturbative solutions for lattice quantum gravity, Nucl. Phys. B 444 (1995), 619-639. MR 96c:83024
  • [M1] J. Mitchell, Short time behavior of Hermite functions on compact Lie groups, J. Funct. Anal. 164 (1999), 209-248. MR 2000d:22010
  • [M2] J. Mitchell, Asymptotic expansions of Hermite functions on compact Lie groups, preprint.
  • [R] J. Rawnsley, A nonunitary pairing of polarizations for the Kepler problem, Trans. Amer. Math. Soc. 250 (1979), 167-180. MR 81m:58037
  • [RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis, Second Edition, Academic Press, New York, London, 1980. MR 85e:46002
  • [Sa] G. Sadasue, Equivalence-singularity dichotomy for the Wiener measures on path groups and loop groups, J. Math. Kyoto Univ. 35 (1995), 653-662. MR 98d:60108
  • [S1] I. Segal, Mathematical problems of relativistic physics, Chap.VI, In: Proceedings of the Summer Seminar, Boulder, Colorado, 1960, Vol. II. (M. Kac, Ed.), Lectures in Applied Mathematics, American Math. Soc., Providence, Rhode Island, 1963.MR 26:1774
  • [S2] I. Segal, Mathematical characterization of the physical vacuum for a linear Bose-Einstein field, Illinois J. Math. 6 (1962), 500-523.MR 26:1075
  • [S3] I. Segal, The complex wave representation of the free Boson field, In: Topics in functional analysis: Essays dedicated to M.G. Krein on the occasion of his 70th birthday (I. Gohberg and M. Kac, Eds), Advances in Mathematics Supplementary Studies, Vol. 3, Academic Press, New York, 1978, pp. 321-343. MR 82d:81069
  • [St] M. Stenzel, The Segal-Bargmann transform on a symmetric space of compact type, J. Funct. Anal. 165 (1999), 44-58. CMP 99:14
  • [Su] H. Sugita, Holomorphic Wiener function, In: New trends in stochastic analysis (Charingworth, 1994) (K. D. Elworthy, S. Kusuoka, and I. Shigekawa, Eds.), World Sci. Publishing, River Edge, NJ, 1997, pp. 399-415. MR 2000f:60083
  • [T1] T. Thiemann, Reality conditions inducing transforms for quantum gauge field theory and quantum gravity, Classical Quantum Gravity 13 (1996), 1383-1403. MR 97g:83055
  • [T2] T. Thiemann, Gauge field theory coherent states II. Peakedness properties, preprint. [http://xxx.lanl.gov hep-th/0005237]
  • [Wo] N. Woodhouse, Geometric Quantization, Second Edition, Oxford Univ. Press, Oxford, New York, 1991. MR 94a:58082
  • [Wr] K. Wren, Constrained quantisation and $\theta$-angles. II, Nuclear Phys. B 521 (1998), 471-502. MR 99g:58019
  • [Z] F. Zhu, The heat kernel of the second classical domain and of the symmetric space of a normal real form, Chinese J. Contemp. Math. 13 (1992), 181-200. MR 94h:32054

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 22E30, 81S30, 53D50, 60H30, 43A32, 46E20, 58J25

Retrieve articles in all journals with MSC (2000): 22E30, 81S30, 53D50, 60H30, 43A32, 46E20, 58J25


Additional Information

Brian C. Hall
Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email: bhall@nd.edu

DOI: https://doi.org/10.1090/S0273-0979-00-00886-7
Received by editor(s): June 7, 2000
Published electronically: September 26, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society