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Number theory is perhaps as old as civilization. Since the dawn of history, hu-
manity has been fascinated by numbers and their properties. In fact, the ancient
Pythagorean philosophy that “all is number” is literally true in our modern digi-
talized world. Central to the study of numbers has been the distribution of prime
numbers, for these are the building blocks of all numbers, so to speak. Analytic
number theory has been largely focussed on understanding the distribution of prime
numbers.

Over the centuries, methods have evolved to study prime numbers, and one of
the main tools has been the Riemann zeta function. If we let π(x) denote the
number of primes up to x, Gauss conjectured that

π(x) ∼ x

log x
as x→∞. In a fundamental paper of 1860, Riemann outlined, but did not prove,
how the complex analytic study of the ζ-function would lead to a proof of the Gauss
conjecture (also known as the prime number theorem (PNT)). In later decades,
largely due to the efforts of Hadamard and de la Vallée Poussin, the necessary com-
plex analysis was developed, culminating in the proof of the prime number theorem
in 1896. Much of their work was simplified and streamlined to create the beauti-
ful “Tauberian theorem” of Wiener and Ikehara. Because of the equivalence of the
prime number theorem to the non-vanishing of the ζ-function on the line Re(s) = 1,
it was suspected (in the early part of the 20th century) that an “elementary” proof
of PNT which avoids the use of complex analysis either does not exist or is difficult
to find. Amongst the pundits, the former view held sway for almost half a century.
We shall discuss this history later.

In this way, the word ‘elementary’ had evolved to have two meanings in number
theory. The first meaning is the standard one, signifying ‘simplicity’. The second
meaning is the technical one, meaning the avoidance of complex analysis. Both of
these meanings are implied by the title of the book under review. However, for the
most part, it is ‘simplicity’ that characterizes the methods of proof in this book.

The book is divided into three parts. The first part is called “a first course in
number theory”. The second is called “divisors and primes in multiplicative number
theory”. The third is devoted to “three problems in additive number theory”.

The first part, which deals with the standard elementary topics of divisibility,
prime numbers, congruences, primitive roots and quadratic reciprocity law, can be
used to form the basis of an undergraduate course in elementary number theory.
After discussing Fermat’s little theorem and Euler’s generalization of it, there is a
section on public key cryptography.

We also find here a chapter on Fourier analysis on finite abelian groups and
a proof of the law of quadratic reciprocity using this formalism. (A serious typo
occurs on page 138: in line 4, the equal sign should be replaced by ≤.) Perhaps this
chapter is a bit too abstract for undergraduate fare, and its full significance can
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only be appreciated if the reader gets to Chapter 10 in Part 2, where Dirichlet’s
theorem on primes in arithmetic progressions is done. It is even debatable whether
this qualifies as a chapter in a book dedicated to ‘elementary methods’.

Included in part 1 is a chapter devoted to the ABC conjecture. This exceed-
ingly beautiful conjecture has the remarkable feature of unifying diverse strands of
thought in arithmetic and analysis. It was formulated by Masser and Oesterlé in
1980 and says the following: Let ε > 0 be fixed. Given any three mutually coprime
integers A,B,C with A+B = C, we have

max(|A|, |B|, |C|) ≤ κ(ε)
( ∏
p|ABC

p
)1+ε

where the constant κ(ε) depends only on ε. Following Silverman [S], this conjecture
is then used to show that there are infinitely many primes p such that

2p−1 6≡ 1(mod p2).

Part 2 is devoted to the elementary proof of the prime number theorem. After
discussing basic properties of arithmetical functions, Nathanson derives Cheby-
shev’s estimates for π(x), the number of primes ≤ x, in Chapter 8. In Chapter
9, he gives the elementary proof of the prime number theorem due to Erdös [E2]
and Selberg [Se] and in Chapter 10, the elementary proof of Dirichlet’s theorem on
primes in arithmetic progressions.

As alluded to above, the elementary proof of the prime number theorem has a
curious history, a part of which is described in the notes at the end of Chapter 9. In
1921, G.H. Hardy [B] wrote “No elementary proof of the prime number theorem is
known, and one may ask whether it is reasonable to expect one. Now we know that
the theorem is roughly equivalent ... to the theorem that Riemann’s zeta function
has no roots on a certain line. A proof of such a theorem, not fundamentally
dependent upon the ideas of the theory of functions, seems to be extraordinarily
unlikely. It is rash to assert that a mathematical theorem cannot be proved in a
particular way; but one thing seems quite clear. We have certain views about the
logic of the theory; we think that some theorems, as we say ‘lie deep’ and others
nearer to the surface. If anyone produces an elementary proof of the prime number
theorem, he will show that these views are wrong, that the subject does not hang
together in the way we have supposed, and that it is time for the books to be cast
aside and for the theory to be rewritten.”

In a sense, Hardy was wrong. Erdös and Selberg did succeed in providing an
elementary proof. In 1949, reviewing the work of Erdös and Selberg, A. E. Ingham
[I] wrote, “What Selberg and Erdös do is to deduce the prime number theorem
directly ... without the explicit intervention of the analytical fact ... How far the
practical effects of this revolution of ideas will penetrate into the structure of the
subject, and how much of the theory will ultimately have to be rewritten, it is too
early to say.”

Nathanson writes that “number theorists of Hardy’s and Ingham’s generation
believed that there could be no elementary proof of the prime number theorem.
They were also convinced that if, by some miracle, an elementary proof were dis-
covered, then the ideas in that proof would lead to tremendous progress in our
knowledge of the distribution of prime numbers and the zeros of the zeta function.
Both statements are false. Erdös and Selberg produced elementary proofs, but
their beautiful method has not led to any extraordinary new discoveries in number
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theory or analysis.” Perhaps it is too early to tell. It may be fair to say that we
have a greater understanding of the more ‘complicated’ proof than the ‘elementary’
proof.

E.G. Straus writes cautiously in an undated manuscript, “The elementary proof
has so far not produced the exciting innovations in number theory that many of
us expected to follow. So what we witnessed in 1948 may in the course of time
prove to have been a brilliant but somewhat incidental achievement without the
historic significance it then appeared to have. My own inclination is to believe that
it was the beginning of important new ideas not yet fully understood and that its
importance will grow over the years.”

This looks like a fairer assessment. We do not understand the elementary proof
and its curious relationship to sieve theory. At present, the elementary proof sits as
an isolated chapter of number theory. But this may change. There are now at least
two different elementary proofs of the prime number theorem, one by Daboussi
[Da] and another by Hildebrand [Hi]. Further research may validate the position of
Strauss.

The third part of the book is devoted to three problems in additive number
theory. The first problem is Waring’s problem. This problem states that for every
positive integer k, there is an integer g(k) such that every natural number can be
written as a sum of g(k) k-th powers. For instance, g(2) = 4 is the celebrated
theorem of Lagrange asserting that every natural number can be written as a sum
of 4 squares. For k = 3, that g(3) = 9 is a theorem of Wieferich and Kempner,
proved in 1912. In 1909, Hilbert [H] established the existence of g(k) for every
k. His method, being an existence proof, led to no effective estimates. Later,
developing the circle method, Hardy, Littlewood and Vinogradov gave transparent
analytic proofs that opened the way for quantitative results.

It is fascinating that we even have a conjectural formula for g(k) as 2k+[(3/2)k]−
2, where the square brackets indicate the greatest integer function. It is easy to see
that this is a lower bound for g(k) by considering n = 2k[(3/2)k]− 1. This formula
tallies with g(2) = 4, g(3) = 9 and predicts g(4) = 19. Though g(3) was known
as far back as 1912, the fact that g(4) = 19 was established as late as 1986 by
Balasubramanian, Dress and Deshouillers [BDD] and that g(5) = 37 by Chen [C]
in 1964. In 1940, Pillai [P2] had shown g(6) = 73. In fact, in 1936, Dickson [D] and
Pillai.1 [P1] independently proved that if we write 3k = q2k + r with 0 < r < 2k,
then g(k) = 2k + [(3/2)k] − 2 provided r + q ≤ 2k. It is conjectured and still
unproved that this condition always holds, though Mahler [M], using Roth’s theo-
rem, showed in 1957 that there are only finitely many exceptions to the condition.
These tantalizing facts about Waring’s problem are not mentioned in the book.
Their inclusion would have stimulated the interest of budding mathematicians in
the problem.

The second problem involves deriving formulas for the number of representations
of a given integer n as a sum of s squares. In this, Nathanson follows an old method
of Liouville, which he labels as a “mysterious method”. This method is based on
the following identity. Let F (x, y, z) be a function defined on all triples of integers
(x, y, z) such that F (−x, y, z) = −F (x, y, z) and F (x,−y,−z) = F (x, y, z) for all

1It seems that Pillai had proved this a year earlier in 1935, as is written in his obituary [Ch]
by K. Chandrasekharan. Unfortunately, Pillai died in a plane crash in 1950 on his way to the
International Congress in Cambridge, Massachusetts.
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triples of integers (x, y, z). If n is not a perfect square,

2
∑

u2+de=n

F (e− 2u, u+ d, 2u+ 2d− e) =
∑

u2+de=n

F (d+ e, u, d− e).

If n is a perfect square, there is a simple correction term in the identity. Even
though one can give an ‘elementary’ proof of this identity, its origins would be
mysterious to the reader. In fact, Liouville himself was motivated by the theory of
elliptic functions in deriving it, and today, after Hecke’s work, it is best understood
in the context of modular forms. Here again we see that an elementary proof does
not lead to greater insight, though it does give ‘quick’ proofs of classical theorems
of Fermat and Lagrange. This section is essentially a re-working of Chapter 13 of
the classic book of Uspensky and Heaslet [UH].

The third problem of the last section concerns the partition function p(n) and the
derivation, by simple methods, of the asymptotic formula log p(n) ∼ c

√
n for some

constant c. Hardy and Ramanujan [HR], by using the circle method (this is where
the method formally appears for the first time in the mathematical literature),
showed in 1918 that

p(n) ∼ ec
√
n

4
√

3n
as n→∞. Their methods were not ‘elementary’ in the technical sense. In a paper
of 1942, Erdös [E1] gave an elementary proof (again in the technical sense) of the
result of Hardy and Ramanujan, basing it on the easily derived recursion

np(n) =
n∑
v=1

σ(v)p(n− v)

where σ(v) denotes the sum of the positive divisors of v.
In summary, Nathanson’s book is well-written and can be recommended for a

first course in analytic number theory at the graduate level. Each chapter contains
interesting exercises. A few chapters make for difficult reading, like Chapter 12,
giving Linnik’s proof of the Waring problem, and Chapter 9, giving the elementary
proof of the prime number theorem. Perhaps they are necessary to reveal the other
meaning of the word ‘elementary’. The book is appropriately dedicated to Pál
Erdös, who was without argument a master of the ‘elementary’ art.
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