Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Resolution of singularities and modular Galois theory


Author: Shreeram S. Abhyankar
Journal: Bull. Amer. Math. Soc. 38 (2001), 131-169
MSC (2000): Primary 12F10, 14H30, 20D06, 20E22
DOI: https://doi.org/10.1090/S0273-0979-00-00892-2
Published electronically: December 27, 2000
MathSciNet review: 1816069
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

I shall sketch a brief history of the desingularization problem from Riemann thru Zariski to Hironaka, including the part I played in it and the work on Galois theory which this led me to, and how that caused me to search out many group theory gurus. I shall also formulate several conjectures and suggest numerous thesis problems.


References [Enhancements On Off] (What's this?)

  • [A01] S. S. Abhyankar, On the ramification of algebraic functions, American Journal of Mathematics 77 (1955), 572-592. MR 17:193c
  • [A02] S. S. Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic $p \ne 0$, Annals of Mathematics 63 (1956), 491-526. MR 17:1134d
  • [A03] S. S. Abhyankar, On the valuations centered in a local domain, American Journal of Mathematics 78 (1956), 321-348. MR 18:556b
  • [A04] S. S. Abhyankar, Simultaneous resolution for algebraic surfaces, American Journal of Mathematics 78 (1956), 761-790. MR 18:600b
  • [A05] S. S. Abhyankar, Coverings of algebraic curves, American Journal of Mathematics 79 (1957), 825-856. MR 20:872
  • [A06] S. S. Abhyankar, Tame coverings and fundamental groups of algebraic varieties I - VI, American Journal of Mathematics 81-82 (1959-1960), 46-94 of vol 81, and 120-190 and 341-338 of vol 82. MR 21:3428; MR 22:1574; MR 22:1575; MR 22:1576
  • [A07] S. S. Abhyankar, Resolution of singularities of arithmetical surfaces, Purdue Conference on Arithmetical Algebraic Geometry, Harper and Row (1965), 111-152. MR 34:171
  • [A08] S. S. Abhyankar, Resolution of Singularities of Embedded Algebraic Surfaces, Academic Press, 1966. MR 36:164
  • [A09] S. S. Abhyankar, An algorithm on polynomials in one indeterminate with coefficients in a two dimensional regular local domain, Annali di Mathematica Pura ed applicata 71 (1966), 25-60. MR 34:7514
  • [A10] S. S. Abhyankar, Resolution of singularities of algebraic surfaces, Algebraic Geometry, Proceedings of the 1968 Bombay International Colloquium at the Tata Institute of Fundamental Research, Oxford University Press (1969), 1-11. MR 41:1734
  • [A11] S. S. Abhyankar, Historical ramblings in algebraic geometry and related algebra, American Mathematical Monthly 83 (1976), 409-448. MR 53:5581
  • [A12] S. S. Abhyankar, Weighted Expansions for Canonical Desingularization, Springer Lecture Notes in Mathematics 910 (1982). MR 84m:14013
  • [A13] S. S. Abhyankar, Determinantal loci and enumerative combinatorics of Young tableaux, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, vol. I, Kinokuniya Company Ltd., Tokyo (1987), 1-26. MR 90b:14063
  • [A14] S. S. Abhyankar, Enumerative Combinatorics of Young Tableaux, Marcel Dekker, 1988. MR 89e:05011
  • [A15] S. S. Abhyankar, Algebraic Geometry For Scientists And Engineers, American Mathematical Society, 1990. MR 92a:14001
  • [A16] S. S. Abhyankar, Invariant theory and enumerative combinatorics of Young tableaux, Geometric Invariance in Computer Vision, Edited by J. L. Mundy and A. Zisserman, MIT Press (1992), 45-76. CMP 93:06
  • [A17] S. S. Abhyankar, Galois theory on the line in nonzero characteristic, Bulletin of the American Mathematical Society 27 (1992), 68-133. MR 94a:12004
  • [A18] S. S. Abhyankar, Mathieu group coverings in characteristic two, C. R. Acad. Sci. Paris 316 (1993), 267-271. MR 94g:14013
  • [A19] S. S. Abhyankar, Alternating group coverings of the affine line in characteristic greater than two, Math. Annalen 296 (1993), 63-68. MR 94e:14020
  • [A20] S. S. Abhyankar, Square-root parameterization of plane curves, Algebraic Geometry and Its Applications, Papers Presented at the 60th Birthday Conference of Shreeram S. Abhyankar, Edited by C. Bajaj, Springer-Verlag (1994), 19-84. MR 95d:12004
  • [A21] S. S. Abhyankar, Nice equations for nice groups, Israel Journal of Mathematics 88 (1994), 1-24. MR 96f:12003
  • [A22] S. S. Abhyankar, Mathieu group coverings and linear group coverings, Contemporary Mathematics 186 (1995), 293-319. MR 97e:14038
  • [A23] S. S. Abhyankar, Fundamental group of the affine line in positive characteristic, Proceedings of the 1992 International Colloquium on Geometry and Analysis, Tata Institute of Fundamental Research, Bombay (1995), 1-26. MR 97b:14034
  • [A24] S. S. Abhyankar, Again nice equations for nice groups, Proceedings of the American Mathematical Society 124 (1996), 2967-2976. MR 96m:12004
  • [A25] S. S. Abhyankar, More nice equations for nice groups, Proceedings of the American Mathematical Society 124 (1996), 2977-2991. MR 96m:12005
  • [A26] S. S. Abhyankar, Further nice equations for nice groups, Transactions of the American Mathematical Society 348 (1996), 1555-1577. MR 96m:14021
  • [A27] S. S. Abhyankar, Factorizations over finite fields, Finite Fields and Applications, London Mathematical Society Lecture Notes Series 233 (1996), 1-21. MR 98c:11130
  • [A28] S. S. Abhyankar, Local fundamental groups of algebraic varieties, Proceedings of the American Mathematical Society 125 (1997), 1635-1641. MR 97h:14032
  • [A29] S. S. Abhyankar, Projective polynomials, Proceedings of the American Mathematical Society 125 (1997), 1643-1650. MR 98a:12001
  • [A30] S. S. Abhyankar, Hilbert's thirteenth problem, Proceedings of the Franco-Belgian Conference in Reims, Société Mathématique de France, Séminaires et Congrès 2 (1997), 1-11. MR 98i:12003
  • [A31] S. S. Abhyankar, Resolution of Singularities of Embedded Algebraic Surfaces, Second Enlarged Edition containing an Appendix on Analytic Desingularization in Characteristic Zero for Any Dimension, Springer-Verlag, 1998. MR 99c:14021
  • [A32] S. S. Abhyankar, Polynomial expansion, Proceedings of the American Mathematical Society 126 (1998), 1583-1596. MR 98g:12003
  • [A33] S. S. Abhyankar, Semilinear transformations, Proceedings of the American Mathematical Society 127 (1999), 2511-2525. MR 2000e:12009
  • [A34] S. S. Abhyankar, Galois theory of semilinear transformations, Aspects of Galois Theory, London Mathematical Society Lecture Notes Series 256 (1999), 1-37. MR 2000j:12008
  • [A35] S. S. Abhyankar, Galois embeddings for linear groups, Transactions of The American Mathematical Society 352 (2000), 3881-3912. CMP 2000:14
  • [A36] S. S. Abhyankar, Two step descent in modular Galois theory, therorems of Burnside and Caley, and Hilbert's thirteenth problem, To Appear.
  • [A37] S. S. Abhyankar, Desingularizaton and modular Galois theory, To Appear.
  • [ACZ] S. S. Abhyankar, S. D. Cohen and M. Zieve, Bivariate factorization connecting Dickson polynomials and Galois theory, Transactions of The American Mathematical Society 352 (2000), 2871-2887. MR 2000j:12003
  • [AG1] S. S. Abhyankar and S. R. Ghorpade, Young tableaux and linear independence of standard monomials in multiminors of a multimatrix, Discrete Mathematics 96 (1991), 1-32. MR 93b:15033
  • [AJ1] S. S. Abhyankar and S. B. Joshi, Generalized codeletion and standard multitableaux, Canadian Mathematical Society Conference Proceedings 10 (1989), 1-24. MR 91c:05196
  • [AJ2] S. S. Abhyankar and S. B. Joshi, Generalized roinsertive correspondence between multitableaux and multimonomials, Discrete Mathematics 90 (1991), 111-135. MR 92m:05202
  • [AJ3] S. S. Abhyankar and S. B. Joshi, Generalized rodeletive correspondence between multitableaux and multimonomials, Discrete Mathematics vol 93 (1991), 1-17. MR 93a:05129
  • [AJ4] S. S. Abhyankar and S. B. Joshi, Generalized coinsertion and standard multitableaux, Journal of Statistical Planning and Inference 34 (1993), 5-18. MR 94c:05071
  • [AKe] S. S. Abhyankar and P. H.Keskar, Descent principle in modular Galois theory, To Appear.
  • [AK1] S. S. Abhyankar and D. M. Kulkarni, On hilbertian ideals, Linear Algebra and its Applications 116 (1989), 53-79. MR 90c:14032
  • [AK2] S. S. Abhyankar and D. M. Kulkarni, Bijection between indexed monomials & standard bitableaux, Discrete Mathematics 79 (1990), 1-48. MR 91c:05195
  • [AK3] S. S. Abhyankar and D. M. Kulkarni, Coinsertion and standard bitableaux, Discrete Mathematics 85 (1990), 115-166. MR 92d:05179
  • [AL1] S. S. Abhyankar and P. A. Loomis, Once more nice equation for nice groups, Proceedings of the American Mathematical Society 126 (1998), 1885-1896. MR 98k:12003
  • [AL2] S. S. Abhyankar and P. A. Loomis, Twice more nice equations for nice groups, Contemporary Mathematics 245 (1999), 63-76. CMP 2000:09
  • [AOS] S. S. Abhyankar, J. Ou and A. Sathaye, Alternating group coverings of the affine line for characteristic two, Discrete Mathematics 133 (1994), 25-46. MR 95h:14018
  • [APS] S. S. Abhyankar, H. Popp and W. K. Seiler, Mathieu group coverings of the affine line, Duke Math. Jour 68 (1992), 301-311. MR 93j:14018
  • [AS1] S. S. Abhyankar and G. S. Sundaram, Galois theory of Moore-Carlitz-Drinfeld modules, C. R. Acad. Sci. Paris 325 (1997), 349-353. MR 98g:11067
  • [AS2] S. S. Abhyankar and G. S. Sundaram, Galois groups of generalized iterates of generic vectorial polynomials, To Appear.
  • [AY1] S. S. Abhyankar and I. Yie, Some more Mathieu group coverings in characteristic two, Proceedings of the American Mathematical Society 122 (1994), 1007-1014. MR 95b:12007
  • [AY2] S. S. Abhyankar and I. Yie, Small Mathieu group coverings in characteristic two, Proceedings of the American Mathematical Society 123 (1995), 1319-1329. MR 95f:14050
  • [Alb] G. Albanese, Transformazione birazionale di una superficie algebriche in un'altra priva di punti multipli, Rendiconti della Circolo Matematica de Palermo 48 (1924), 321-332.
  • [As1] M. Aschbacher, On the maximal subgroups of the finite classical group, Inventiones Mathematicae 76 (1984), 469-514. MR 86a:20054
  • [As2] M. Aschbacher, Finite Group Theory, Cambridge University Press, 1986. MR 89b:20001; corrected reprint MR 95b:20002
  • [Bir] G. Birkhoff, Lattice Theory, American Mathematical Society, 1948. MR 10:673a
  • [BMa] G. Birkhoff and S. MacLane, Survey of Modern Algebra, Macmillan, 1941. MR 3:99h
  • [BSh] F. Buekenhout and E. E. Shult, On the foundations of polar geometry, Geometriae Dedicata 3 (1974), 155-170. MR 50:3091
  • [Bur] W. Burnside, Theory of groups of finite order, Cambridge University Press, First Edition 1897, Second Edition 1911.
  • [BPa] W. S. Burnside and A. W. Panton, Theory of Equations I-II, Dublin, Hodges, Figgis and Co., London, 1904.
  • [Cam] P. J. Cameron, Finite permutation groups and finite simple groups, Bulletin of the London Mathematical Society 13 (1981), 1-22. MR 83m:20008
  • [CKa] P. J. Cameron and W. M. Kantor, 2-Transitive and antiflag transitive collineation groups of finite projective spaces, Journal of Algebra 60 (1979), 384-422. MR 81c:20032
  • [Ca1] L. Carlitz, A class of polynomials, Transactions of the American Mathematical Society 43 (1938), 167-182. CMP 95:18
  • [Ca2] L. Carlitz, Resolvents of certain linear groups in a finite field, Canadian Journal of Mathematics 8 (1956), 568-579. MR 18:377f
  • [Car] R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, Ginn, Boston, 1937; 1956 reprint. MR 17:823a
  • [Cay] A. Cayley, On the intersection of curves, Mathematische Annalen 30 (1887), 85-90.
  • [Che] C. Chevalley, On the theory of local rings, Annals of Mathematics 44 (1943), 690-708. MR 5:171d
  • [Chr] C. Christensen, Strong domination/weak factorization of three-dimensional regular local rings I-II, Journal of Indian Mathematical Society 45-47 (1981-83), 21-47 and 241-250. MR 88a:14010a; MR 88a:14010b
  • [CMa] S. D. Cohen and R. W. Matthews, A class of exceptional polynomials, Transactions of the American Mathematical Society 345 (1994), 897-909. MR 95d:11164
  • [Coh] I. S. Cohen, On the structure and ideal theory in complete local rings, Transactions of the American Mathematical Society 59 (1946). MR 7:509h
  • [Cre] L. Cremona, Elementi di Geometria Projecttiva, Rome/Turin: G. B. Paravia and Company, 1873.
  • [Cu1] S. D. Cutkosky, Local factorization of birational maps, Advances in Mathematics 132 (1997), 167-315. MR 99c:14018
  • [Cu2] S. D. Cutkosky, Local monomialization and factorization of morphisms, Asterisque, No. 260 (1999).
  • [DWe] R. Dedekind and H. Weber, Theorie der algebraischen functionen einer veränderlichen, Crelle Journal 92 (1882), 181-290.
  • [Dic] L. E. Dickson, Linear Groups, Teubner, 1901.
  • [Dri] V. G. Drinfeld, Elliptic Modules, Math. Sbornik 94 (1974), 594-627. MR 52:5580
  • [Fei] W. Feit, On a class of doubly transitive permutation groups, Illinois Journal of Mathematics 4 (1960), 170-186. MR 22:4784
  • [For] A. R. Forsyth, Theory of Functions of a Complex Variable, Cambridge University Press, London, 1893.
  • [Fri] M. D. Fried, On Hilbert's irreducibility theorem, Journal of Number Theory 6 (1974), 211-231. MR 50:2117
  • [FGS] M. D. Fried, R. Guralnick and J. Saxl, Schur covers and Carlitz's conjecture, Israel Journal of Mathematics 82 (1993), 157-225. MR 94j:12007
  • [Fu1] D. E. Fu, Local weak simultaneous resolution for high rational ranks, Journal of Algebra 194 (1997), 614-630. MR 98m:13005
  • [Gek] E.-U. Gekeler, Moduli for Drinfeld modules, The Arithmetic of Function Fields, eds. D. Goss et al, de Gruyter (1992), 153-170. MR 93m:11049
  • [Gor] D. Gorenstein, Classifying the finite simple groups, Bulletin of the American Mathematical Society 14 (1986), 1-98. MR 87k:20001
  • [Gos] D. Goss, Basic Structures of Function Field Arithmetic, Springer-Verlag, 1996. MR 97i:11062
  • [Gro] A. Grothendieck, Eléments de Géométrie Algébrique I-IV, Publ. Math. IHES, 1960-1967. MR 30:3885; MR 33:7330; MR 36:178; MR 39:220
  • [Gur] R.M. Guralnick, Monodromy groups of covers of small genus in positive characteristic, To Appear.
  • [GSa] R. M. Guralnick and J. Saxl, Monodromy groups of Polynomials, Groups of Lie Type and Their Geometries (W. M. Kantor and L. Di Marino, eds.), Cambridge University Press (1995), 125-150. MR 96b:20003
  • [GSt] R.M. Guralnick and K. F. Stevenson, Prescribing ramification, To Appear.
  • [Ha1] D. Harbater, Abhyankar's conjecture on Galois groups over curves, Inventiones Mathematicae 117 (1994), 1-25. MR 95i:14029
  • [Har] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977. MR 57:3116
  • [Hay] D. R. Hayes, Explicit class field theory for rational function fields, Transactions of the American Mathematical Society 189 (1974), 77-91. MR 48:8444
  • [He1] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geometrae Dedicata 2 (1974), 425-560. MR 49:439
  • [He2] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order II, Journal of Algebra 93 (1985), 151-164. MR 86k:20046
  • [Hi1] D. Hilbert, Mathematische Probleme, Archiv für Mathematik und Physik 1 (1901), 44-63 and 213-237.
  • [Hi2] D. Hilbert, Über die Gleichung neunten Grades, Mathematische Annalen 97 (1927), 243-250.
  • [Hir] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic $0$, Annals of Mathematics 79 (1964), 109-326. MR 33:7333
  • [HBl] B. Huppert and N. Blackburn, Finite Groups I, II, III, Springer-Verlag, New York (1982). MR 84i:20001a; MR 84i:20001b
  • [Jor] C. Jordan, Traité des Substitutions et des Équatione Algébriques, Gauthier-Villars, 1870.
  • [Jun] H. W. E. Jung, Darstellung der Funktionen eines algebraischen Körpers zweier Veränderlichen $x,y$ in der Umgebung einer Stelle $x = a, y = b$, Crelle Journal 133 (1908), 289-314.
  • [Ka1] W. M. Kantor, Rank 3 characterizations of classical geometries, Journal of Algebra 36 (1975), 309-313. MR 52:8229
  • [Ka2] W. M. Kantor, Homogeneous designs and geometric lattices, Journal of Combinatorial Theory, Series A 38 (1985), 66-74. MR 87c:51007
  • [KLi] P. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups, Cambridge University Press, 1990. MR 91g:20001
  • [Kle] F. Klein, Entwicklung der Mathematik im neunzehnten Jahrhundert, Berlin, 1926.
  • [Kr1] W. Krull, Allgemeine Bewertungstheorie, Crelle Journal 167 (1932), 160-196.
  • [Kr2] W. Krull, Dimensionstheorie in Stellenringe, Crelle Journal 179 (1938), 204-226.
  • [Lan] S. Lang, Algebraic groups over finite fields, American Journal of Mathematics 78 (1956), 555-563. MR 19:174a
  • [Len] H. W. Lenstra, On the degrees of permutation polynomials, Abstracts of the Third International Conference on Finite Fields and Applications (1995), 40.
  • [LZi] H. W. Lenstra and M. Zieve, A family of exceptional polynomials in characteristic three, Finite Fields and Applications, London Mathematical Society Lecture Notes Series 233 (1996), 209-218. MR 98a:11174
  • [Li1] M. W. Liebeck, The affine permutation groups of rank three, Proceedings of the London Mathematical Society 54 (1987), 477-516. MR 88m:20004
  • [Li2] M. W. Liebeck, Characterization of classical groups by orbit sizes on the natural module, Proceedings of the American Mathematical Society 124 (1996), 2961-2966. MR 97e:20068
  • [LSe] M. W. Liebeck and G. M. Seitz, On the subgroup structure of classical groups, Inventiones Mathematicae 134 (1998), 427-453. MR 99h:20074
  • [MMa] G. Malle and B. H. Matzat, Inverse Galois Theory, Springer-Verlag, 1999. MR 2000k:12004
  • [Mar] B. Marggraff, Über primitive Gruppen mit transitiven Untergruppen geringeren Grades, Giessen Dissertation (1892).
  • [Mat] E. Mathieu, Mémoire sur l'étude des fonctions de plusieurs quantités sur la manière de les former, et sur les substitutions qui les laissent invariables, J. Math Pures Appl. 6 (1861), 241-323.
  • [Mod] M. R. Modak, Combinatorial meaning of the coefficients of a Hilbert polynomial, Proceedings of the Indian Academy of Sciences 102 (1992), 93-123. MR 94e:13022
  • [Moo] E. H. Moore, A two-fold generalization of Fermat's theorem, Bulletin of the American Mathematical Society 2 (1896), 189-199.
  • [Mue] P. Müller, New examples of exceptional polynomials, Finite Fields: Theory, Applications and Algorithms, (G. L. Mullen and J. J. Shiue, eds.), Contemporary Mathematics 168 (1994), 245-249. MR 95h:11136
  • [Mul] S. B. Mulay, Determinantal loci and the flag variety, Advances in Mathmatics 74 (1989), 1-30. MR 90j:14071
  • [Neu] C. Neumann, Riemann's Theorie der Abel'schen Integrale, Teubner, 1888.
  • [New] I. Newton, Geometria Analitica, 1660.
  • [NoE] E. Noether, Eliminationstheorie und allgemeine Idealtheorie, Mathematische Annalen 90 (1923), 229-261.
  • [NoM] M. Noether, Über einen Satz aus der Theorie der algebraischen Funktionen, Mathematische Annalen 6 (1873), 351-359.
  • [Ost] A. Ostrowski, Über einige Lösungen der Funktionalgleichung $\phi (x) \phi (y) =\phi (xy)$, Acta Mathematica 41 (1918), 271-284.
  • [Pri] R. J. Pries, Formal patching and deformation of wildly ramified covers of curves, University of Pennsylvania Thesis (2000).
  • [Ray] M. Raynaud, Revêtment de la droit affine en charactéristic $p > 0$ et conjecture d'Abhyankar, Inventiones Mathematicae 116 (1994), 425-462. MR 94m:14034
  • [Rie] B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Inauguraldissertation, Göttingen (1851), 1-48.
  • [Sal] G. Salmon, Higher Plane Curves, Dublin, 1852.
  • [Sha] D. L. Shannon, Monoidal transforms, American Journal of Mathematics 95 (1973), 294-320. MR 48:8492
  • [Sev] F. Severi, Vorlesungen über algebraische Geometrie, Teubner, 1921.
  • [Se1] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini courbes elliptiques, Inventiones Mathematicae 15 (1972), 259-331. MR 52:8126
  • [Se2] J.-P. Serre, Résumé de cours et travaux, Annuaire du Collège de France 85-86 (1985).
  • [Se3] J.-P. Serre, A letter to S. S. Abhyankar, Algebraic Geometry and Its Applications, Papers Presented at the 60th Birthday Conference of Shreeram S. Abhyankar, Edited by C. Bajaj, Springer-Verlag (1994), 85-91. MR 95d:12005
  • [Spe] A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, Berlin, 1937.
  • [Sta] H. Stahl, Theorie der Abel'schen Funktionen, Teubner, 1896.
  • [Suz] M. Suzuki, On a class of doubly transitive groups, Annals of Mathematics 75 (1962), 104-145. MR 25:112
  • [Syl] J. J. Sylvester, On a general method of determining by mere inspection the derivations from two equations of any degree, Philosophical Magazine 16 (1840).
  • [Tha] D. S. Thakur, Drinfeld modules and arithmetic in the function fields, Math. Res. Notices, Duke Math Jour. 9 (1992), 185-197. MR 93g:11061
  • [Th1] J. G. Thompson, Some finite groups which appear as Gal$(L\vert K)$ where $K \subset Q(\mu _{n})$, Journal of Algebra 89 (1984), 437-499. MR 87f:12012
  • [Th2] J. G. Thompson, $GL_{n}(q)$, rigidity and the braid group, Bull. Soc. Math. Belg 42 (1990), 723-733. MR 96d:20018
  • [Tit] J. Tits, Buildings of spherical type and finite $BN$-pairs, Springer Lecture Notes in Mathematics 386 (1974). MR 57:9866
  • [Udp] S. G. Udpikar, On Hilbert polynomial of certain determinantal ideals, International Journal of Mathematics and Mathematical Sciences 14 (1992), 155-162. MR 92e:05123
  • [VYo] O. Veblen and J. T. Young, Projective Geometry I-II, Ginn and Company, 1910-1918.
  • [Vel] F. D. Veldkamp, Polar geometry I-V, Nederl. Akad. Wetensch, Proc. Ser A 62-63, Indag, Math 22 (1959), 207-212. MR 23:A2773
  • [Vo1] H. Voelklein, $GL_{n}(q)$ as Galois group over the rationals, Math. Annalen 293 (1992), 163-176. MR 94a:12007
  • [Vo2] H. Voelklein, Braid group action via $GL_{n}(q)$ and $U_{n}(q)$, and Galois realizations, Israel Journal of Mathematics 82 (1993), 405-427. MR 94j:12009
  • [Vo3] H. Voelklein, Groups as Galois Groups, Cambridge University Press, 1996. MR 98b:12003
  • [Wan] D. Wan, A generalization of the Carlitz conjecture, Finite Fields, Coding Theory and Advances in Communications and Computing, Lecture Notes in Pure and Applied Mathematics, Dekker 141 (1993), 431-432.
  • [Wie] H. Wielandt, Finite Permutation Groups, Academic Press, 1964. MR 32:1252
  • [Wey] H. Weyl, Die Idee der Riemannschen Fläche, Teubner, 1923.
  • [Za1] O. Zariski, Some results in the arithmetical theory of algebraic varieties, American Journal of Mathematics 61 (1939), 224-294.
  • [Za2] O. Zariski, The reduction of singularities of algebraic surfaces, Annals of Mathematics 40 (1939), 639-689.
  • [Za3] O. Zariski, Foundations of a general theory of birational correspondences, Transactions of the American Mathematical Society 53 (1943), 490-542. MR 5:11b
  • [Za4] O. Zariski, The reduction singularities of three-dimensional algebraic varieties, Annals of Mathematics 45 (1944), 472-542. MR 6:102f
  • [Za5] O. Zariski, The fundamental ideas of abstract algebraic geometry, Proceedings of the International Congress of Mathematicians (1950), 77-89. MR 13:578e
  • [Za6] O. Zariski, Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields, Memoirs of the American Mathematical Society 1 (1951). MR 12:853f
  • [ZSa] O. Zariski and P. Samuel, Commutative Algebra I-II, Van Nostrand, 1959-1961. MR 19:833e; MR 22:11006
  • [Z01] H. J. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem, Univ of Hamburg 11 (1936), 17-44.
  • [Z02] H. J. Zassenhaus, The Theory of Groups, Chelsea, 1949. MR 11:77d

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 12F10, 14H30, 20D06, 20E22

Retrieve articles in all journals with MSC (2000): 12F10, 14H30, 20D06, 20E22


Additional Information

Shreeram S. Abhyankar
Affiliation: Mathematics Department, Purdue University, West Lafayette, IN 47907
Email: ram@cs.purdue.edu

DOI: https://doi.org/10.1090/S0273-0979-00-00892-2
Received by editor(s): December 7, 1999
Published electronically: December 27, 2000
Additional Notes: Abhyankar’s work was partly supported by NSF Grant DMS 97-32592 and NSA grant MDA 904-97-1-0010.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society