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In the paper “Analysis Situs” that founded the enterprise of algebraic topology,
Poincaré introduced the notion of cobordism. Two compact, closed, n-dimensional
manifolds are cobordant if there is a compact manifold of dimension n+ 1 whose
boundary is the disjoint union of the two manifolds. The collection of cobordism
classes of compact n-manifolds is denoted by Nn and the union of the Nn over all
dimensions by N∗. This graded set enjoys some extra structure—it is an Abelian
group with the addition induced by the disjoint union of n-manifolds. Furthermore,
N∗ is a graded ring with the multiplication induced by the Cartesian product of
manifolds.

The determination of the structure of the ring N∗ is a celebrated result of
Thom [25]. To the orthogonal group O(n) and its universal classifying bundle
EO(n) → BO(n), one associates the Thom space MO(n), which is constructed
from the universal n-plane bundle over BO(n) by collapsing the vectors outside the
associated unit disk bundle to a point. The operation of adding a trivial line bundle
to the universal n-plane bundle induces a mapping fn : ΣMO(n) → MO(n + 1),
where ΣX is the suspension of a space X given by

ΣX = X × I/(X × {0, 1} ∪ {x0} × I).

Using transversality arguments, Thom analyzed the sequence of homotopy groups,

· · · → πq+n(MO(n))→ πq+n+1(MO(n+ 1))→ πq+n+2(MO(n+ 2))→ · · ·
where the homomorphisms are given by the composite

πq+n(MO(n)) E−→ πq+n+1(ΣMO(n))
fn∗−−→ πq+n+1(MO(n+ 1)).

Here E denotes the Einhängung or suspension homomorphism of Freudenthal that
takes the homotopy class of a mapping g : Sn → Y to the homotopy class of
the mapping Σg : ΣSn = Sn+1 → ΣY . The long sequence stabilizes to a group
dependent only on q that Thom proved to be isomorphic to Nq. Thus the problem
of classifying manifolds up to cobordism was reduced to the problem of computing
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certain limit groups of the sequence of spaces and mappings {MO(n), fn}. Thom
went further to compute the direct limits limn πq+n(MO(n)) using cohomological
arguments.

Similar stabilizing sequences of homotopy groups are implied by the classical
Freudenthal suspension theorem: the suspension homomorphism E : πq(X) →
πq+1(ΣX) is an isomorphism when X is (n − 1)-connected and q ≤ 2n − 1. For
X = Sn, the sequence of groups E : πn+j(Sn) → πn+j+1(Sn+1) stabilizes to a
single isomorphism class of groups, πSj , the jth stable homotopy group of spheres.
Computation of these groups remains an important problem in homotopy theory.

Stable homotopy theory concerns phenomena like these that become independent
of dimension after enough suspensions. Another stable phenomenon is the suspen-
sion isomorphism of cohomology groups with coefficients in a ring R; for i ≥ 1,
H i(X ;R) ∼= Hi+1(ΣX ;R). In the case of coefficients in the finite field, R = Fp, the
cohomology ring is a module over the Steenrod algebra of stable cohomology oper-
ations, and this graded module is independent of dimension because the Steenrod
operations commute with the suspension isomorphism.

The systems of spaces, {MO(1),MO(2),MO(3), . . . } and {X,ΣX,Σ2X, . . . },
were generalized by Lima [15] to the notion of a spectrum, a collection of spaces,
X = {Xn ; n ≥ 0}, linked together by mappings, fn : ΣXn → Xn+1 (now called a
prespectrum). Equivalently, we could give the adjoints of the fn, f ′n : Xn → ΩXn+1,
where ΩX = map((S1, 1), (X,x0)) denotes the space of based loops in X for a choice
of basepoint x0. Up to homotopy, we can choose a spectrum to have all its mappings
f ′n be homeomorphisms. The homotopy groups of a spectrum, denoted πq(X), are
given by the direct limit of the sequence of homomorphisms,

πq+n(Xn) E−→ πq+n+1(ΣXn)
fn∗−−→ πq+n+1(Xn+1).

Thom’s computation of N∗ generalizes to other cobordism theories by choosing the
appropriate family of structure groups—{SO(n)}, for the cobordism theory of ori-
ented smooth manifolds, {U(n)} for smooth manifolds with a complex structure on
their stable normal bundle. Each choice gives rise to a spectrum MG, whose ho-
motopy groups are isomorphic to the graded ring of cobordism classes of manifolds
with structure group in the chosen family.

Other examples of spectra arise from the Brown representability theorem [5]. A
generalized cohomology theory h∗( ), defined on a reasonable category of spaces
and satisfying certain conditions, is representable in the sense that there is a system
of spaces, X = {Xn} with hn(Z) ∼= [Z,Xn], the set of homotopy classes of maps
from Z to Xn. Excision leads to homotopy equivalences, f ′n : Xn → ΩXn+1, for
each n, and hence, a spectrum. By the time of Brown’s paper, examples of gener-
alized cohomology theories included topological K-theory, bordism and cobordism
theories, and stable cohomotopy. The computation of the coefficients of a gener-
alized cohomology theory, that is, h∗(a point), was made accessible with Adams’s
introduction of the Adams spectral sequence [1]. Milnor used the Adams spectral
sequence in his computation of the cobordism groups associated with MU [20] in
which he determined the structure of H∗(MU;Fp) as a module over the Steenrod
algebra, a key ingredient in later developments.

By the mid 1960’s, Adams had pursued spectral sequence computations of the
stable homotopy groups of spheres using K-theory, and Novikov [21] developed the
analogous computations using complex cobordism, the generalized theory based on
MU. Brown and Peterson [6] introduced spectra BP , based on MU, one for each
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prime, whose algebraic properties opened new opportunities for the computation of
the stable homotopy groups of spheres via the Adams-Novikov spectral sequence.
The possibility of the detection of infinite families of elements in these groups, or-
ganized in a periodic manner, was introduced by Adams [2] and developed by Toda
[26] and Smith [24], who posed the existence of spectra, tailor-made to generalize
the successful argument of Adams.

The construction of such spectra ought to be possible using the constructions
available for spaces, such as the smash product, cofibre and fibre sequences, Post-
nikov towers and later, localization and completion. These computations made it
clear that a homotopy category of spectra was needed. The objects of such a cat-
egory are spectra and the morphisms homotopy classes of maps of spectra. The
category should be equipped with everything one needs to set up the Adams spec-
tral sequence and prove its convergence. Such a category was set up definitively by
Boardman [4].

In the stable homotopy category of spectra, Thom’s computation of N∗ can
be framed as a homotopy equivalence of spectra, MO '

∨
i ΣniK(Z/2Z), where

K(Z/2Z) is the spectrum representing mod 2 cohomology theory and the ni are
determined by Stiefel-Whitney classes. To see where the geometry leaves off and
the topology takes over, we could ask if the product structure on N∗ is realized
at the level of spectra; that is, is there a mapping of spectra MO ∧MO → MO
that induces the multiplication of cobordism classes in the isomorphism N∗ ∼=
π∗(MO)? The first difficulty that this question poses is how to define the smash
product of spectra. At the level of the stable homotopy category of spectra, we
require constructions to work up to homotopy. Hence we can use a lot of flabby
constructions as long as we keep a strict account of them. Boardman shunted
the accounting for the smash product over to linear algebra by introducing the
notion of coordinate-free spectra. Let U denote a countably infinite dimensional
real inner product space isomorphic to R∞ =

⋃
nRn. If V ⊂ U is a linear subspace

of finite dimension, then let SV denote the one-point compactification of V . If we
write ΣVX for X ∧ SV and ΩVX for map(SV , X), then a spectrum will now be
taken as a collection of spaces, EV , one for each finite dimensional linear subspace
of U , together with structure maps fV,W : ΣW−V EV → EW whenever V ⊂ W
and W − V = V ⊥ ⊂ W . One requires the usual transitivity relations when Z ⊂
W ⊂ V and that the adjoints of the structure maps f̃W,V : EV → ΩW−V EW be
homeomorphisms. The canonical inner product structure on R∞ gives a classical
spectrum. In the coordinate-free formulation the definition of the smash product
of two spectra E ∧ F is obtained by associating EV ∧ FV ′ to V ⊕ V ′ ⊂ U ⊕ U .
The isomorphisms between countably infinite dimensional real inner product spaces
legislate the identifications required and are organized under the rubric of an operad.

Another development of the 1960’s that expanded the store of generalized the-
ories and put new demands on the representing spectra was the axiomatization of
equivariant homotopy theory, the algebraic topology of spaces on which a group
acts. Notions like the equivariant K-theory of Atiyah and Segal [3] required a
foundation that made clear the relations between equivariant and nonequivariant
phenomena. In order to fix the representation theory of the transformation group
in its expected place, a broader definition of spectrum was required. Boardman’s
coordinate-free spectra provided a rich enough structure after replacing R∞ with
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a countably infinite dimensional representation space that contains every finite di-
mensional representation infinitely often. This point of view was fruitfully taken by
tom Dieck in his study of equivariant bordism [10], and it was later considerably
generalized by May and his coauthors [18].

At the end of the 1960’s, Quillen [22] singled out complex cobordism as spe-
cial among generalized cohomology theories by identifying the connection between
complex-oriented theories and formal group laws. The subsequent algebraic frame-
work has led to considerable progress toward a global understanding of stable ho-
motopy theory. The detection of periodic infinite families of elements in the stable
homotopy groups of spheres is clearer in this algebraic context. The algebraic
structure of BP ∗(BP ) led Ravenel [23] to conjecture many aspects of the global
structure of the stable homotopy category of spectra that were proved in the 1980’s
by Hopkins and his coauthors [12]. This is the chromatic viewpoint that is central
to stable homotopy theory.

Although the picture of stable homotopy theory available through the eyes of
complex cobordism is well-structured, the underlying category of spectra and topo-
logical maps of spectra is complicated. At the heart of the complications stood
the problem of defining the smash product of two spectra in such a way that it is
associative at the level of spectra, not simply associative up to homotopy. With-
out such a notion, the promise of the algebraic picture in which ring spectra and
module spectra over such a ring spectrum have a manageable homological algebra
is fraught with difficulty. In fact, Lewis [13] showed that a reasonable set of axioms
for a symmetric monoidal structure with respect to smash product on a category
of spectra and maps between them was too much to ask.

The monograph of Elmendorf, Kriz, Mandell and May (EKMM) overcomes this
major difficulty. The principal corollary of what May has termed a ‘brave new
world’ [17] is the potential to develop a satisfying homological algebra of spectra.
A ring spectrum E has a multiplication E ∧ E → E that is already associative on
the point-set level, not merely up to higher homotopies, as in earlier constructions.
Associated to a commutative ring spectrum is a category of module spectra over it
and a derived category obtained by inverting homotopy equivalences. This includes
classical homological algebra as a special case by associating to a commutative
algebraic ring R the Eilenberg-Mac Lane ring spectrum HR. The derived category
of module spectra over HR agrees with the derived category of chain complexes
over the ring. In the case of MU-module spectra, the constructions of familiar
spectra are made precise and extended. Furthermore, invariants of algebraic rings,
such as Hochschild homology, can be constructed for ring spectra more naturally
in this appropriate category of spectra.

The second book surveys the work of May, his coauthors, and students on equi-
variant homotopy theory, especially in the light of the advances made in EKMM.
The collection of essays is the work of ten authors and grew out of a conference that
took place in Alaska in 1993. The topics cover the foundations and advances in equi-
variant homotopy theory with some emphasis on relations between nonequivariant
stable homotopy theory and its equivariant analogue. The organizing principles of
homotopy limits and colimits, diagrams, and closed model categories are developed,
and signal results like Miller’s proof of the Sullivan conjecture [19] and Carlsson’s
proof of the Segal conjecture [8] are presented in context. The exposition and choice
of topics by May and his collaborators are well crafted to bring the uninitiated up
to speed in a subject that has a long technical past.



BOOK REVIEWS 249

The third book under review is based on May’s third-quarter first-year graduate
course in algebraic topology at the University of Chicago. Algebraic topology is
a tool in many areas of mathematics, and its influence will only increase. Like
statistics, one might like a first course in algebraic topology that is tailored to
one’s own needs, be they geometric, differentiable, or homological. This concise
course steers its way through the essential parts of the subject, with emphasis on
the success of categorical formulations and methods. This may not appeal to every
reader, but it makes for a clear and concise account, attractive in its directness.

In previous publications ([7], [9], [11], [14], [18]), May has presented large scale
pictures of the state of certain important aspects of algebraic topology, especially as
seen through the eyes of his well-developed programs. He has involved his students
and collaborators in these projects and subsequently brought to the community the
work of new researchers with fresh ideas. That his programs have been successful
in generating such new ideas is clear in these publications and the many others
published by his students. The concise course notes reviewed here give students the
background for the literature that has become part of the foundations of algebraic
topology. The ‘brave new worlds’ of stable homotopy theory and equivariant stable
homotopy theory developed by May and his coworkers hold great promise for the
future of algebraic topology, and these books offer the reader an entrance into this
world.
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