Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Noncommutative curves and noncommutative surfaces


Authors: J. T. Stafford and M. Van den Bergh
Journal: Bull. Amer. Math. Soc. 38 (2001), 171-216
MSC (2000): Primary 14A22, 14F05, 16D90, 16P40, 16S80, 16W50, 18E15
DOI: https://doi.org/10.1090/S0273-0979-01-00894-1
Published electronically: January 9, 2001
MathSciNet review: 1816070
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this survey article we describe some geometric results in the theory of noncommutative rings and, more generally, in the theory of abelian categories.

Roughly speaking and by analogy with the commutative situation, the category of graded modules modulo torsion over a noncommutative graded ring of quadratic, respectively cubic, growth should be thought of as the noncommutative analogue of a projective curve, respectively surface. This intuition has led to a remarkable number of nontrivial insights and results in noncommutative algebra. Indeed, the problem of classifying noncommutative curves (and noncommutative graded rings of quadratic growth) can be regarded as settled. Despite the fact that no classification of noncommutative surfaces is in sight, a rich body of nontrivial examples and techniques, including blowing up and down, has been developed.


References [Enhancements On Off] (What's this?)

  • 1. K. Ajitabh, Residue complex for Sklyanin algebras of dimension three, Adv. Math., 144 (1999), 137-160. CMP 99:14
  • 2. M. Artin, Some problems on three-dimensional graded domains, Representation theory and algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 238, Cambridge Univ. Press, 1995, pp. 1-19. MR 99a:16037
  • 3. M. Artin and W. Schelter, Graded algebras of global dimension 3, Adv. in Math. 66 (1987), 171-216. MR 88k:16003
  • 4. M. Artin and J. T. Stafford, Noncommutative graded domains with quadratic growth, Invent. Math. 122 (1995), 231-276. MR 96g:16027
  • 5. -, Semiprime graded algebras of dimension two, J. Algebra, 277 (2000). 68-123. CMP 2000:12
  • 6. M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, vol. 1, Birkhäuser, Boston, 1990, pp. 33-85. MR 92e:14002
  • 7. -, Modules over regular algebras of dimension 3, Invent. Math. 106 (1991), 335-388. MR 93e:16055
  • 8. M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings, J. Algebra 133 (1990), 249-271. MR 91k:14003
  • 9. M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. in Math. 109 (1994), no. 2, 228-287. MR 96a:14004
  • 10. -, Abstract Hilbert schemes, Algebr. Represent. Theory, to appear.
  • 11. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, London, 1969. MR 39:4129
  • 12. S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields., Internat. Math. Res. Notices 4 (1998), 201-215. MR 99b:14009
  • 13. W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 3, Springer Verlag, Berlin, 1984. MR 86c:32026
  • 14. A. Beauville, Surface algébriques complexes, Astérisque, 54 (1978). MR 58:5686
  • 15. A. Beilinson and J. Bernstein, Localisation de $\mathfrak{g}$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15-18. MR 82k:14015
  • 16. A. I. Bondal, Noncommutative deformations and Poisson brackets on projective spaces, MPI-preprint, 1993.
  • 17. A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183-1205, 1337. MR 91b:14013
  • 18. A. I. Bondal and D. O. Orlov, Semi-orthogonal decompositions for algebraic varieties, MPI preprint, 1996.
  • 19. A. I. Bondal and A. E. Polishchuk, Homological properties of associative algebras: the method of helices, Russian Acad. Sci. Izv. Math. 42 (1994), 219-260. MR 94m:16011
  • 20. A. I. Bondal and M. Van den Bergh, in preparation.
  • 21. P. M. Cohn, Algebra, John Wiley & Sons, New York, 1982. MR 83e:00002
  • 22. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. MR 38:1144
  • 23. I. M. Gel'fand and A. A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 5-19. MR 34:7731
  • 24. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Math. Soc. Student Texts, vol. 16, Cambridge University Press, 1989. MR 91c:16001
  • 25. A Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J., 9 (1957), 119-221. MR 21:1328
  • 26. R. Hartshorne, Algebraic Geometry, Springer Verlag, Berlin, 1977. MR 57:3116
  • 27. T. J. Hodges, Morita equivalence of primitive factors of $u(\mathfrak{sl}(2))$, Contemp. Math. 139 (1992), 175-179. MR 94e:17007
  • 28. P. Jorgensen, Serre duality for $\operatorname {Tails}(A)$, Proc. Amer. Math. Soc. 125 (1997), 709-716. MR 97e:14002
  • 29. -, Noncommutative graded homological identities, J. London Math. Soc. 57 (1998), 336-350. MR 99h:16010
  • 30. -, Intersection theory on noncommutative surfaces, Trans. Amer. Math. Soc., 352 (2000), 5817-5854. CMP 99:14
  • 31. P. Jorgensen and J. J. Zhang, Gourmet Guide to Gorensteinness, Adv. Math., 151 (2000), 313-345. CMP 2000:12
  • 32. M. Kapranov, Non-commutative geometry based on commutator expansions, J. Reine Angew. Math. 505 (1998), 73-118. MR 2000b:14003
  • 33. A. Kapustin, A. Kuznetsov, D. Orlov, Noncommutative Instantons and Twistor Transform, hep-th/0002193, 2000.
  • 34. D. S. Keeler, Criteria for $\sigma$-ampleness, J. Amer. Math. Soc., 13 (2000), 517-532. CMP 2000:12
  • 35. B. Keller, Deriving DG-categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), 63-102. MR 95h:18014
  • 36. -, Introduction to $A_\infty$ algebras and modules, to appear; math.RA/9910179, 1999.
  • 37. G. M. Kelly and R. Street, Review of the elements of 2-categories, Category Seminar, Lecture Notes in Math., vol. 420, Springer Verlag, Berlin, 1972, pp. 75-103. MR 50:10010
  • 38. S. L. Kleiman, Toward a numerical theory of ampleness, Ann. Math. 84 (1966), 293-344. MR 34:5834
  • 39. M. Kontsevich and A. Rosenberg, Noncommutative smooth spaces, The Gelfand Mathematical Seminars, 1996-1999, 85-108, Gelfand Math. Sem., Birkhäuser Boston, Boston, MA, 2000. CMP 2000:17
  • 40. G. R. Krause and T. H. Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension, Research Notes in Math., vol. 116, Pitman, Boston, 1985. MR 86g:16001
  • 41. L. Le Bruyn, Noncommutative geometry at $n$, math.AG/9904171, 1999.
  • 42. -, Non-commutative compact manifolds constructed from quivers., AMA Algebra Mpntp. Announc., 1999, No.1. CMP 2000:07
  • 43. L. Le Bruyn, S. P. Smith, and M. Van den Bergh, Central extensions of three-dimensional Artin-Schelter regular algebras, Math. Z. 222 (1996), 171-212. MR 98c:16028
  • 44. T. Levasseur and S. P. Smith, Modules over the 4-dimensional Sklyanin algebra, Bull. Soc. Math. France 121 (1993), 35-90. MR 94f:16054
  • 45. Y. I. Manin, Cubic forms: Algebra, Geometry, Arithmetic, North Holland, Amsterdam, 1974. MR 57:343
  • 46. -, Quantum groups and noncommutative geometry, Montreal University, 1988. MR 91e:17001
  • 47. -, Topics in Noncommutative Geometry, Princeton University Press, New Jersey, 1991. MR 92k:58024
  • 48. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons, New York, 1987. MR 89j:16023
  • 49. B. Mitchell, Rings with several objects, Advances in Math. 8 (1972), 1-161. MR 45:3524
  • 50. C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, North Holland, Amsterdam, 1982. MR 84i:16002
  • 51. A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), 205-236. MR 96c:18006
  • 52. A. V. Odesskii and B. L. Feigin, Sklyanin algebras associated with an elliptic curve, preprint, Institute for Theoretical Physics, Kiev, 1989.
  • 53. -, Sklyanin's elliptic algebras, Functional Anal. Appl. 23 (1989), no. 3, 207-214. MR 91e:16037
  • 54. D. M. Patrick, Noncommmutative Ruled Surfaces, Ph.D. Thesis, MIT, June 1997; www.math.washington.edu/~patrick/prof.html.
  • 55. -, Noncommutative symmetric algebras of two-sided vector spaces, J. Algebra 223 (2000), 16-36.
  • 56. I. Reiner, Maximal Orders, Academic Press, New York, 1975. MR 52:13910
  • 57. I. Reiten and M. Van den Bergh, Noetherian hereditary categories satisfying Serre duality, to appear; math.RT/9911242, 1999.
  • 58. R. Resco, A dimension theorem for division rings, Israel J. Math. 35 (1980), no. 3, 215-221. MR 81j:16021
  • 59. C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer Verlag, Berlin, 1984. MR 87f:16027
  • 60. A. L. Rosenberg, Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Mathematics and its Applications, vol. 330, Kluwer Academic Publishers, Dordrecht, 1995. MR 97b:14004
  • 61. -, The spectrum of abelian categories and reconstruction of schemes, Rings, Hopf algebras, and Brauer groups, Lecture Notes in Pure and Appl. Math., vol. 197, Marcel Dekker, New York, 1998, pp. 257-274. MR 99d:18011
  • 62. L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980. MR 82a:16021
  • 63. A. H. Schofield, Stratiform simple Artinian rings, Proc. London Math. Soc. (3) 53 (1986), no. 2, 267-287. MR 87i:16026
  • 64. J. P. Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197-278. MR 16:953c
  • 65. I. R. Shafarevitch, Basic Algebraic Geometry I, Springer Verlag, Berlin, 1994.
  • 66. B. Shelton and M. Vancliff, Embedding a quantum rank three quadric in a quantum $\mathbb{ P} ^3$, Comm. Algebra 27 (1999), 2877-2904. CMP 99:12
  • 67. E. K. Sklyanin, Some algebraic structures connected to the Yang-Baxter equation, Functional Anal. Appl. 16 (1982), 27-34. MR 84c:82004
  • 68. -, Some algebraic structures connected to the Yang-Baxter equation. Representations of quantum algebras, Functional Anal. Appl. 17 (1983), 273-284. MR 85k:82011
  • 69. L. W. Small, J. T. Stafford, and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Camb. Phil. Soc. 97 (1985), 407-414. MR 86g:16025
  • 70. L. W. Small and R. B. Warfield, Jr, Prime affine algebras of Gelfand-Kirillov dimension one, J. Algebra 91 (1984), 386-389. MR 86h:16006
  • 71. S. P. Smith, The $4$-dimensional Sklyanin algebras, K-theory 8 (1994), 65-80. MR 95i:16016
  • 72. S. P. Smith and J. T. Stafford, Regularity of the 4-dimensional Sklyanin algebra, Compositio Math. 83 (1992), 259-289. MR 93h:16037
  • 73. S. P. Smith and J. M. Staniszkis, Irreducible representations of the $4$-dimensional Sklyanin algebra at points of infinite order, J. Algebra 160 (1993), 57-86. MR 95c:16027
  • 74. S. P. Smith and J. J. Zhang, Curves on noncommutative schemes, Algebr. Represent. Theory 1 (1998), 311-351. CMP 99:11
  • 75. J. T. Stafford, Regularity of algebras related to the Sklyanin algebras, Trans. Amer. Math. Soc. 341 (1994), no. 2, 895-916. MR 94d:16040
  • 76. J. T. Stafford and J. J. Zhang, Examples in noncommutative projective geometry, Math. Proc. Cambridge Philos. Soc. 116 (1994), 415-433. MR 95h:14001
  • 77. -, Homological properties of (graded) noetherian PI rings, J. Algebra, 168 (1994), 988-1026. MR 95h:16030
  • 78. B. Stenström, Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 217, Springer Verlag, Berlin, 1975. MR 52:10782
  • 79. D. R. Stephenson, Artin-Schelter regular algebras of global dimension three, J. Algebra 183 (1996), 55-73. MR 97h:16053
  • 80. -, Algebras associated to elliptic curves, Trans. Amer. Math. Soc. 349 (1997), 2317-2340. MR 97m:16080
  • 81. D. R. Stephenson and J. J. Zhang, Noetherian connected graded algebras of global dimension $3$, J. Algebra, 230 (2000), 474-495. CMP 2000:16
  • 82. J. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124 (1996), 619-647. MR 98c:16057
  • 83. R. Thomason and T. Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, vol. 3, Birkhäuser, Boston, 1990, pp. 247-435. MR 92f:19001
  • 84. M. Vancliff and K. Van Rompay, Embedding a quantum non-singular quadric in a quantum $\mathbb{ P} ^3$, J. Algebra 195 (1997), 93-129. MR 99a:16040
  • 85. M. Vancliff, K. Van Rompay and L. Willaert, Some quantum $\mathbb{ P} ^3$s with finitely many points, Comm. Algebra 26 (1998), 1193-1208. MR 99c:16045
  • 86. M. Van den Bergh, A translation principle for Sklyanin algebras, J. Algebra 184 (1996), 435-490. MR 98a:16047
  • 87. -, Blowing-up of noncommutative smooth surfaces, Mem. Amer. Math. Soc., to appear; math.QA/980911, 1998.
  • 88. -, Noncommutative quadrics, in preparation.
  • 89. -, Some noncommutative birational transformations, in preparation.
  • 90. M. Van den Bergh and M. Van Gastel, Graded modules of Gelfand-Kirillov dimension one over three-dimensional Artin-Schelter regular algebras, J. Algebra 196 (1997), 251-282. MR 99c:16020
  • 91. F. Van Oystaeyen and A. Verschoren, Noncommutative Algebraic Geometry, Lecture Notes in Math., vol. 887, Springer Verlag, Berlin, 1981. MR 85i:16006
  • 92. F. Van Oystaeyen and L. Willaert, Examples and quantum sections of schematic algebras, J. Pure Appl. Algebra 120 (1997), no. 2, 195-211. MR 98h:14004
  • 93. A. B. Verevkin, On a non-commutative analogue of the category of coherent sheaves on a projective scheme, Amer. Math. Soc. Transl. 151 (1992), 41-53. MR 93j:14002
  • 94. Q. S. Wu and J. J. Zhang, Some homological invariants of local PI algebras, J. Algebra 225 (2000), 904-935. CMP 2000:09
  • 95. A. Yekutieli and J. J. Zhang, Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc. 125 (1997), 697-707. MR 97e:14003
  • 96. -, Rings with Auslander dualizing complexes, J. Algebra 213 (1999), 1-51. MR 2000f:16012
  • 97. J. J. Zhang, On lower transcendence degree., Adv. Math. 139 (1998), 157-193. MR 2000a:16046

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 14A22, 14F05, 16D90, 16P40, 16S80, 16W50, 18E15

Retrieve articles in all journals with MSC (2000): 14A22, 14F05, 16D90, 16P40, 16S80, 16W50, 18E15


Additional Information

J. T. Stafford
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
Email: jts@math.lsa.umich.edu

M. Van den Bergh
Affiliation: Departement WNI, Limburgs Universitair Centrum, 3590 Diepenbeek, Belgium
Email: vdbergh@luc.ac.be

DOI: https://doi.org/10.1090/S0273-0979-01-00894-1
Keywords: Noetherian graded rings, noncommutative projective geometry, deformations, twisted homogeneous coordinate rings
Received by editor(s): October 18, 1999
Received by editor(s) in revised form: May 20, 2000
Published electronically: January 9, 2001
Additional Notes: The first author was supported in part by an NSF grant
The second author is a senior researcher at the FWO and was partially supported by the Clay Research Institute during the preparation of this article.
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society