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The concept of distance is already present in everyday language, where it refers
to two physical objects or even abstract ideas being mutually close or far apart. The
most common (but by no means most general) mathematical incarnation of this idea
is the notion of a metric space (X, d). Here X is an abstract set, and the distance
d(x, x′) between arbitrary points x and x′ in X is a nonnegative real number. The
most important restriction on the so-called distance function d : X ×X → R is the
famous triangle inequality

d(x, x′′) ≤ d(x, x′) + d(x′, x′′)

for all x, x′ and x′′ in X . In addition one also insists that it is symmetric, i.e.,
d(x, x′) = d(x′, x) for all x and x′ in X , and that it satisfies the separation axiom,
d(x, x′) = 0 if and only if x = x′.

Metric spaces of all kinds permeate the book under review. The introduction
and role of various notions of distances between even general metric spaces is at the
heart of the book. In this review we will describe some of these ideas and topics
related to them.

The ordinary Euclidean space Rn with its pythagorean distance between points
x = (x1, . . . , xn) and x′ = (x′1, . . . , x

′
n) given by

d(x, x′) =
√

(x1 − x′1)2 + . . .+ (xn − x′n)2

is the archetypical example of a metric space of basic importance to both geometry
and analysis. Subsets with the induced distance function provide a variety of other
interesting examples including many discrete or even finite sets. For sufficiently
nice subsets X ⊂ Rn, where any two points can be joined by a rectifiable curve, i.e.,
a path of finite length, there is another natural metric, where the distance between
x and x′ in X is the infimum of lengths of curves joining x and x′ inside X . A
metric space (X, d) with this property is called a length or inner metric space. In
such spaces, the geodesics (locally shortest curves) play a significant role in the
geometry of the space. If X is a smooth submanifold of Rn, its induced length
metric is Riemannian. Although this hides much of the beauty and richness of
Riemannian geometry emerging from its metric tensor g (an inner product in each
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tangent space), any Riemannian manifold M can be defined in this way according
to the famous embedding theorem of J. Nash.

By means of a metric d : X × X → R it is possible to express notions of con-
vergence, size and shape. Typical examples of size are the diameter, diam(X) =
max d(x, x′), and volume, vol(X) (Riemannian or α-dimensional Hausdorff mea-
sure), of a space X . Other, often more complicated, metric invariants, are used
to describe local or global shape. The emperor among all these is curvature in
all of its guises. The idea behind curvature is to express, infinitesimally, local or
global deviation from flatness as exhibited in euclidean geometry. The mathemati-
cal notion originated in the study of smooth surfaces. It was Gauss who discovered
that the apparently extrinsic notion of curvature of a surface M2 ⊂ R3, measuring
how it bends (in terms of principal curvatures), is indeed intrinsic and can be de-
tected by the angle sum of geodesic triangles on the surface. If L(r) is the length
of the boundary of a small ball of radius r around a point p on the surface, the
(Gauss)curvature Kp at p can be expressed in terms of the Taylor expansion for
L(r) by

L(r) = 2πr − 2π
6
Kpr

3 +O(r4).

Here the first term, 2πr is exactly the formula in the flat euclidean plane R2.
In general, for a Riemannian manifold, Riemann introduced the curvature tensor
Rp in terms of the Taylor expansion of the metric tensor g at the point p in M .
Algebraic manipulations (notably taking traces) with the curvature tensor lead to
other curvature invariants, the most important ones being sectional curvature, Ricci
curvature, and scalar curvature.

The sectional curvature assigns to any two-dimensional subspace P of the tangent
space at a point p ∈ M a number sec(P ). For surfaces this is the Gauss curva-
ture, and in general complete information about sectional curvature is equivalent
to complete information about the curvature tensor. It controls the local expan-
sion/contraction behavior of geodesics emanating from a point compared with that
of euclidean geometry. A lower bound on the sectional curvature, e.g. sec ≥ 0,
is equivalent to global comparison of geodesic triangles; i.e., triangles in M are
“fatter” (have larger angles) than euclidean triangles with the same side lengths.
This so-called Toponogov comparison theorem is the key to most global results for
manifolds with a lower (sectional) curvature bound.

The Ricci curvature assigns to any one dimensional subspace L of the tangent
space at a point p ∈ M a number Ric(L) (the sum of sectional curvatures of two
planes spanned by L and an orthonormal basis of its complement). Its most direct
geometric significance is related to volume control. In particular, if Ric ≥ 0 and
volB0(r) = cnr

n denotes the volume of an r-ball in euclidean n-space, then the
relative volume function

F (r) = volB(p, r)/ volB0(r)(1)

is nonincreasing and F (r)→ 1 as r → 0. This was first proved by Bishop for small
r (depending on p) and globally by Gromov in the original French version [35] of the
book under review. It was also Gromov who pointed out the real significance of this
relative volume comparison estimate in many different contexts. More generally,
this estimate holds for arbitrary sectors, i.e., sets consisting of minimal geodesics
emanating from a fixed point p. In this generality it is equivalent to a lower bound
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for Ric. In sharp contrast to sectional curvature, any manifold of dimension at
least 3 admits a metric of negative Ricci curvature. This striking result was first
proved by Gao and Yau [29] in dimension three, and then by Lohkamp [49] in all
dimensions.

The scalar curvature assigns to any point p ∈M a number (the sum of Ricci cur-
vatures of lines spanned by an orthonormal basis at p). It controls volume of balls
only infinitesimally, i.e., enters in the Taylor expansion for volB(p, r). Although it
has little metric significance (almost all “geometry” has been “washed out”), this
weakest curvature measure is still restricted by the topology of the manifold in gen-
eral (many manifolds do not admit a metric with positive scalar curvature). The
large and beautiful body of work devoted to understanding relations between topol-
ogy and scalar curvature involves a mixture of analytic and topological methods
(see e.g. [69], [63] and [48]).

As indicated above (local) bounds on sectional curvature are expressible in purely
metric terms via bounds on fatness/slimness of small geodesic triangles. This ap-
proach to curvature in length spaces with sufficiently many geodesics was pioneered
and developed by A.D. Alexandrov and his school. It is amazing that up to a small
loss of regularity of the metric tensor (g is only C1,α in general), complete Rie-
mannian manifolds (with locally convex boundary) can be characterized as finite
dimensional complete inner metric spaces with locally bounded curvature according
to Nicolaev [52] and Plaut [59].

Geodesic spaces, i.e., metric spaces in which any two points are joined by a
minimal curve (e.g. any locally compact complete inner metric space), in which
arbitrary geodesic triangles are slimmer than euclidean ones are commonly referred
to as CAT(0) spaces. These possibly quite singular spaces have played a significant
role in recent years, for example in the context of rigidity problems and geometric
group theory [6], [30], and even in billiard problems [7]. When the space is the
graph of a group, a similar idea yields the notion Gromov hyperbolic groups. This
concept has been intensely investigated for algebraic, geometric and topological
reasons (see e.g. [25]).

A purely metric approach to curvature, which can be used in general even for
finite metric spaces, goes back to A. Wald. According to Berestovskii [4], we say
that curvX ≥ k if any four tuple of points x = (x0, x1, x2, x3) ∈ X4 can be
isometrically embedded in the simply connected 3-manifold S3

k(x) with constant
curvature k(x) ≥ k. This is equivalent to the statement

∠1,2(k) + ∠2,3(k) + ∠3,1(k) ≤ 2π(2)

where ∠i,j(k), the so-called comparison angle, is the angle at x0(k) in the geodesic
triangle in S2

k with vertices (x0(k), xi(k), xj(k)) the isometric image of (x0, xi, xj).
It was also Berestovskii who observed that for Riemannian manifolds M this con-
dition is equivalent to secM ≥ k. The class of finite dimensional complete inner
metric spaces with a lower curvature bound, so-called Alexandrov spaces (curved
from below), have an astoundingly rich structure developed primarily by Perelmann
[53] and in [8] (cf. also [60] for a dimension independent approach). Locally such
spaces are conelike and include all orbit spaces of Riemannian manifolds by proper
isometric actions. This structure is obtained by extending the critical point theory
for (non-smooth) distance functions in Riemannian geometry, originating in [44]
(cf. [11] and [38]), to Alexandrov spaces.
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Metric aspects of Riemannian geometry and related topics (including the ones
alluded to above) have witnessed a tremendous evolution over the last few decades.
Much of this is in one way or another tied to concepts for “closeness” between
different Riemannian manifolds or even general metric spaces. For manifolds this
development can be traced back on the one hand to Shikata’s work on the differ-
entiable sphere theorem [68], where he introduced a notion of (Lipschiz) distance
between differentiable structures on a smooth manifold, and on the other hand to
Cheeger’s work on finiteness problems [10] and the general approach to pinching
theorems [9] (such theorems assert that a manifold has the same type as one of a
suitable collection of model spaces if some of its geometric invariants are similar
to those of the model spaces). In his thesis, the idea that abstract manifolds can
converge to each other is also present. The fact that the class of closed n-manifolds
M with arbitrary fixed bounds

| secM | ≤ C, diamM ≤ D and volM ≥ v > 0(3)

contains at most finitely many diffeomorphism types is a consequence of the inter-
pretation that this class is precompact in a certain topology where sufficiently close
manifolds are diffeomorphic.

The idea of measuring the distance between subspaces of a given metric space
goes back to Hausdorff. If (X, d) is a metric space and A,B ⊂ X are compact
subsets, the Hausdorff distance between A and B is given by

dXH(A,B) = inf{ε|Dε(A) ⊃ B,Dε(B) ⊃ A}
where Dε(A) = {x ∈ X |d(x,A) ≤ ε} is the ε-neighborhood of A in X . This idea was
extensively studied in the Russian and Polish schools led by Urysohn and Borsuk.

The dramatic phase transition came with Gromov’s far-reaching idea to extend
the Hausdorff distance to arbitrary (compact) metric spaces. This distance is now
called the Gromov-Hausdorff distance and is denoted by dGH . If A and B are
two abstract compact metric spaces, dGH(A,B) ≤ ε if A and B admit isometric
embeddings into a metric space X and dXH(A,B) ≤ ε. The actual distance is then
the infimum of all such distances for all X and all isometric embeddings. It turns
out that it suffices to take X = A

∐
B, the disjoint union of A and B, and consider

all metrics on X = A
∐
B extending the ones on A and on B. Thus

dGH(A,B) = infX=A
∐
Bd

X
H(A,B).

A simple but illustrative example is to take A = pt and B = {x0, x1, x2} with all
distances equal to 1. Then dGH(A,B) = 1

2 . The Gromov-Hausdorff distance is
indeed a distance function on the collection of isometry classes of compact metric
spaces. For non-compact but locally compact spaces there is a natural notion of
pointed convergence based on convergence of balls with a fixed center. With this
notion the tangent space TpM of a Riemannian manifold at a point p is the pointed
Gromov-Hausdorff limit of the scaled manifolds (λM, p) with the scale λ blowing
up to infinity. By their very definition, these notions of distance/topology are very
coarse. For example, by definition of compactness it is clear that any such space can
be approximated arbitrarily well by finite metric spaces; i.e., the collection of finite
metric spaces is Gromov-Hausdorff dense in the space of all compact metric spaces.
This coarseness is both a strength and a weakness: Most anything converges, but
limit spaces are in general not of much use. In fact, what is probably most shocking
about this metric is how powerful it actually is. The first spectacular application of
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this idea was Gromov’s solution of the Milnor conjecture for groups of polynomial
growth (the number of words of length at most ` in a fixed finite set of generators
of the group grows at most polynomially in `). Based on the apparent naive idea
that the integers Z when viewed as a metric space converge to the real numbers R
when the metric on Z is scaled to zero, Gromov [34] proved that

Any group of polynomial growth is a finite extension of a lattice in a
nilpotent Lie group.

In contrast to this impressive result, the following very useful so-called Gromov
compactness criterion is quite easy to prove :

A space C of compact metric spaces is Gromov-Hausdorff precompact
if and only if for every ε > 0, any X ∈ C can be covered by the same
number of ε-balls.

It then follows directly from the relative volume estimate (1) that the class of
closed Riemannian n-manifolds M with bounds

RicM ≥ C and diamM ≤ D(4)

is relatively compact in the Gromov-Hausdorff topology. Hence for any ε there are
finitely many manifolds M1, . . . ,Mk(ε) from this class such that any other manifold
with these properties is at most ε away from one of these finitely many. This led
to the natural question whether there might be any topological finiteness prop-
erties for this class. Many examples, e.g., with positive Ricci curvature, have
been constructed (cf. [67] and [55]) showing for example that there is not even
a bound on the Betti numbers except for b1(Mn) = 0 (Myers theorem). When
the Ricci curvature is nonnegative, b1(Mn) ≤ n (Bochner). The problem is that
spaces in the Gromov-Hausdorff closure can be very complicated and are not in
general obviously related to the manifolds close to them. Nonetheless, Gromov-
Hausdorff convergence techniques have played a central role in the most recent
far-reaching progress due to Cheeger and Colding in understanding manifolds with
a lower bound on Ricci curvature (see e.g. [19]). The main breakthrough came
with Colding’s L2 − average version of Toponogov’s triangle comparison theorem
for thin triangles [17]. Prior to that Abresch and Gromoll [1] had obtained an es-
timate for the excess (failure of triangle inequality from equality) of thin triangles.
This delicate estimate can be viewed as a weakened finite quantitive version of the
Cheeger-Gromoll splitting theorem [15], asserting that a line (geodesic which is min-
imal between any two of its points) splits off isometrically in a complete manifold of
nonnegative Ricci curvature. These and other new techniques allow one to transfer
the splitting theorem and Cheng’s maximal diameter/volume theorem [16] to limit
spaces [12], and yields among other things corresponding almost rigidity results for
manifolds. It follows in particular that an n-manifold M with RicM ≥ RicSn1 and
volM ≥ volSn1 -ε is Gromov-Hausdorff close to the unit sphere Sn1 and diffeomorphic
to it [17], [13]. Also a compact manifold with almost nonnegative Ricci curvature
and b1(M) = n is diffeomorphic to the n-torus T n = S1 × . . .× S1 [18], [13].

One might expect that the topology induced by the Gromov-Hausdorff metric is
stronger when restricted to smaller classes. Indeed, if we replace the lower bound for
Ricci curvature with one for sectional curvature, one gains much more control on the
limit objects since the distance comparison expressed in (2) is preserved in the limit.
In particular the Gromov-Hausdorff limit, X = limMi, of a sequence of Riemannian
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n-manifolds Mi with secMi ≥ k is an Alexandrov space with curvX ≥ k. Even for
this class of manifolds, though, one still knows very little in general when collapse
occurs, i.e., when dimX < dimMi (see [71] and [27] though). By an ingenious use
of critical point theory for distance functions (and no use of convergence) Gromov
[33] was able to prove his fabulous Betti number finiteness theorem: For any n, k
andD there is an a priori bound C = C(n, k,D) for the number of generators for the
homology H∗(M) of any n-manifold M with secM ≥ k and diamM ≤ D. When
k = 0, D is obviously irrelevant due to the fact that this class is scale invariant.

For the smaller class where secM ≥ k, diamM ≤ D and in addition vol M ≥ v >
0, the Gromov-Hausdorff convergence technique is strong enough to yield finiteness
of topological types [42], [54], and hence via smoothing theory also of diffeomorphism
types in all dimensions except possibly in dimension four. Again only critical point
theory is needed for finiteness of homotopy types [40]. The homeomorphism result
in all dimensions (including 3 left out in [42]) follows from Perelmann’s amazing
stability theorem for Alexandrov spaces [54]:

If X is a compact n-dimensional Alexandrov space with curvX ≥ k, then
any other compact n-dimensional Alexandrov space Y with curvY ≥ k
Gromov-Hausdorff close to X is homeomorphic to it.

Since a lower volume bound prevents collapse, the Gromov-Hausdorff closure of the
class of all closed Riemannian n-manifolds M with secM ≥ k, diamM ≤ D and
volM > v is a compact subset of the class of all n-dimensional Alexandrov spaces
X with curvX ≥ k and diamX ≤ d. The finiteness result is then an immediate
consequence of the stability theorem. The stability theorem is also instrumental
in achieving recognition type results for manifolds with almost extremal metric
invariants of various types, as explained in [39] and first illustrated in [41] (these
results are like pinching theorems except one does not know the model spaces ahead
of time, and in general the model spaces that emerge are singular spaces).

It should be pointed out that Alexandrov geometry with lower curvature bounds
is useful to Riemannian geometry not only via convergence techniques as described
above. The reason is that there are other natural operations which are closed
within Alexandrov geometry but not in Riemannian geometry. These include taking
quotients by proper isometric group actions and taking joins among positively
curved spaces (see e.g. [46], [43], [61], [62] and [45]).

A big difference between upper and lower curvature bounds is that there is no
global triangle comparison for upper curvature bounds. This explains why upper
curvature bounds are not in general preserved under the process of taking Gromov-
Hausdorff limits. If this comparison holds in balls of a fixed size, however, then
the upper bound carries over to the limit. This is crucial in the study of spaces
with nonpositive curvature, since their universal covers, so-called Hadamard spaces,
have this property even globally. This is the basis for the importance of convergence
techniques in negative and nonpositive curvature.

For manifolds with bounded (sectional) curvature | secM | ≤ C, one of the key
points in Cheeger’s proof of his finiteness theorem is that with an upper bound on
the diameter diamM ≤ D, a lower volume bound is equivalent to a lower bound on
the so-called injectivity radius (largest r such that all geodesics of length at most
r are minimal). For this class of manifolds, Gromov-Hausdorff convergence is very
strong; as a matter of fact it is equivalent to C1,α convergence of metric tensors
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(see Anderson [2] for an extension to bounded Ricci curvature). This also provides
the natural link to Nikolaev’s work mentioned earlier.

In the context of bounded curvature there is a well developed theory for collapse
due to Fukaya, Gromov and Cheeger. This is anchored in Gromov’s milestone
theorem for almost flat manifolds, i.e., manifolds with bounded diameter and (ar-
bitrary) small curvature bounds [31]: Any such manifold is up to a finite cover a
quotient of a nilpotent Lie group by a discrete subgroup. For the ultimate result
see Ruh [64]. Although the proof of this result is not based on convergence, the
idea behind it probably was. Note that almost flatness for M can be expressed as
well by saying that M can collapse to a point with bounded curvature. In general,
the presence of nilpotent groups is imminent when collapse occurs with bounded
curvature. In vague terms such collapse yields a decomposition of the manifold
into submanifolds, a singular foliation, whose leaves in local covers are orbits by
actions of nilpotent groups. Moreover, the collapse takes place along these (in-
fra)nilmanifolds (see [14]). This structure and additional convergence techniques
have recently been used to obtain the following remarkable analogue of Cheeger’s
finiteness result for two-connected manifolds with bounded curvature and diameter,
but no restrictions on volume [58] (cf. also [22]):

The class of simply connected closed Riemannian n-manifolds M with
finite π2(M), | secM | ≤ C and diamM ≤ D contains at most finitely
many diffeomorphism types.

When combined with Gromov’s Betti number theorem, one arrives at the following
amazing result [58]:

For each n,C, and D, there exist a finite number of manifolds M1, . . . ,
Mk(n,C,D), such that any simply connected n-manifold, M with | secM |
≤ C and diamM ≤ D is diffeomorphic to a torus quotient of one of the
Mi’s.

The convergence ideas described above are well suited to describe and analyze
asymptotic properties/quasi-isometry types of noncompact spaces. This enters sig-
nificantly into rigidity aspects of nonpositively curved spaces (e.g. [20], [23], [24],
[28], [47], [65], [66] and [70]) and via covering space theory into the geometry and
large scale invariants for infinite groups [36].

Other geometries of interest in their own right as well, such as Tits geometry [3]
and Carnot-Caretheodory (or sub Riemannian) geometry [37], also arise naturally
in this context.

Much of the astounding development around Riemannian geometry described or
alluded to above owes much to Gromov’s inspirational deep insights and visions
(cf. also [32]). The original French version of the book under review, Structures
Métriques pour les Variétés Riemanniennes, written by J. Lafontaine and P. Pansu,
arose from a course by Gromov at the University of Paris VII during the third se-
mester of 1979. The purpose of that book was to describe some of the connections
between the curvature of a Riemannian manifold M and some of its global proper-
ties reflected not only in its topology but also in relation to other metric invariants
of the manifold and mappings between spaces. The influence of this “little green
book” can hardly be overestimated. Its 150 pages were packed with striking new
concepts and ideas. In particular, it was this book that spread the idea of con-
vergence of Riemannian manifolds to a larger audience. Except for various survey
articles (e.g. [26] and [56]), the only other text that treats this topic is the book by
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Petersen [57]. In addition, new light was shed on classical topics such as quasicon-
formal maps, isoperimetric- and isosystolic inequalities.

Despite the fact that the current “translation”, Metric Structures for Riemann-
ian and Non-Riemannian Spaces, has quadrupled in size, most of the development
described in this review is not treated in the book, at most hinted at. This il-
lustrates not only the reviewer’s personal taste and perspective on the place and
influence of the original book, but also how much this general area stretching some-
where between the fields of topology and global Riemannian geometry has expanded
during the last two decades.

In addition to natural elaborations and extensions of topics treated in the original
version, the main additions in the new book are concerned with relations between
geometry and probability, in particular pertaining to convergence theory. This de-
velopment was stimulated as well by the Levy-Milmann concentration phenomenon
[50], [51], encompassing the law of large numbers for metric spaces with measures
and dimension going to infinity. This topic occupies a whole new chapter in the
book and most of it has not been published elsewhere. As in the previous book,
this addition contains a wealth of new ideas and concepts, including various no-
tions of convergence of metric spaces with measure, and associated invariants such
as observable diameter (see [5] for more details). One of the four appendices in the
book is a reproduction of Gromov’s important unpublished manuscript Paul Levy’s
Isoperimetric Inequality. The others are by P. Pansu, “Quasiconvex” Domains ;
by M. Katz, Systolically Free Manifolds; and by S. Semmes, Metric Spaces and
Mappings Seen at Many Scales. The latter one is the most voluminous of them all.
Here Stephen Semmes makes a delightful presentation of an analyst’s view of metric
spaces, including several key ideas of real analysis made inviting to geometrically
inclined readers.

This is an unconventional book. It is too advanced and not detailed enough
to be a textbook, and too broad and not sufficiently comprehensive (in providing
proofs) to be a research monograph. In many ways it has the spirit of lecture notes.
Although it is unlike others in the series, Birkhäuser’s Progress in Mathematics
is obviously an appropriate home for this book. Its treasure house of ideas and
concepts is presented in a relaxed and rather unpolished style. This style, although
pleasant in some ways, can also lead to frustration. Quite frequently (in particular
in the new chapter about convergence of metric spaces with measures) the reader
is urged to check or investigate things carefully for himself/herself: “(perhaps by
looking through the literature)”, p. 156; or since: “(I have not gone through the
details of this exercise myself)”, p. 157; or directly as in: “We suggest that the
reader fill in the details by setting in order the qualifiers and chasing all the ε’s
and δ’s (this will go smoothly unless we missed something in our II and/or III)”,
p. 208. At times it appears as if Gromov is aware that the reader might suffer:
“We now plunge into the muddy waters of mixed algebraic and metric geometry,
and we invite the courageous reader to swim along through a dozen pages until
the finish in (G”’)”, p. 165. Just the number of ideas and different notions, and
more or less complicated definitions of distances in this chapter, is overwhelming.
I have no doubt that with sufficient persistence, the frustration will pass and one
will be ready to reap the benefits (unfortunately I did not reach this point, but I
urge others to try). If the original French book is any indication, we should all look
forward to the influence this book will have over the next decades.
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