Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The Brunn-Minkowski inequality


Author: R. J. Gardner
Journal: Bull. Amer. Math. Soc. 39 (2002), 355-405
MSC (2000): Primary 26D15, 52A40
DOI: https://doi.org/10.1090/S0273-0979-02-00941-2
Published electronically: April 8, 2002
MathSciNet review: 1898210
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of ${\mathbb R}^n$, and deserves to be better known. This guide explains the relationship between the Brunn-Minkowski inequality and other inequalities in geometry and analysis, and some applications.


References [Enhancements On Off] (What's this?)

  • 1. S. Alesker, S. Dar, and V. Milman, A remarkable measure preserving diffeomorphism between two convex bodies in ${\mathbb{R} }^n$, Geom. Dedicata 74 (1999), 201-212. MR 2000a:52004
  • 2. T. W. Anderson, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc. 6 (1955), 170-176. MR 6:1005a
  • 3. B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), 151-161. MR 2000i:53097
  • 4. J. Arias-de Reyna, Keith Ball, and Rafael Villa, Concentration of the distance in finite-dimensional normed spaces, Mathematika 45 (1998), 245-252. MR 2000b:46013
  • 5. H. Bahn and P. Ehrlich, A Brunn-Minkowski type theorem on the Minkowski spacetime, Canad. J. Math. 51 (1999), 449-469. MR 2000f:53022
  • 6. R. Baierlein, Atoms and Information Theory, W. H. Freeman and Company, San Francisco, 1971.
  • 7. I. J. Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer, Berlin, 1994. MR 95k:35063
  • 8. K. M. Ball, Logarithmically concave functions and sections of convex sets in ${\bold{R}}^n$, Studia Math. 88 (1988), 69-84. MR 89e:52002
  • 9. -, Volumes of sections of cubes and related problems, Geometric Aspects of Functional Analysis, ed. by J. Lindenstrauss and V. D. Milman, Lecture Notes in Mathematics 1376, Springer, Heidelberg, 1989, pp. 251-60. MR 90i:52019
  • 10. -, Shadows of convex bodies, Trans. Amer. Math. Soc. 327 (1991), 891-901. MR 92a:52011
  • 11. -, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), 351-359. MR 92j:52013
  • 12. -, An elementary introduction to modern convex geometry, Flavors of Geometry, ed. by Silvio Levy, Cambridge University Press, New York, 1997, pp. 1-58. MR 99f:52002
  • 13. F. Barthe, Inégalités de Brascamp-Lieb et convexité, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 885-888. MR 98a:26022
  • 14. -, Inégalités Fonctionelles et Géométriques Obtenues par Transport des Mesures, Ph.D. thesis, Université de Marne-la-Vallée, Paris, 1997.
  • 15. -, An extremal property of the mean width of the simplex, Math. Ann. 310 (1998), 685-693. MR 99h:52006
  • 16. -, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335-361. MR 99i:26021
  • 17. -, Optimal Young's inequality and its converse: a simple proof, Geom. Funct. Anal. 8 (1998), 234-242. MR 99f:42021
  • 18. -, Restricted Prékopa-Leindler inequality, Pacific J. Math 189 (1999), 211-222. MR 2000h:52010
  • 19. E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1965. MR 33:236
  • 20. W. Beckner, Inequalities in Fourier analysis, Ann. of Math. 102 (1975), 159-182. MR 52:6317
  • 21. F. Behrend, Über die kleinste umbeschriebene und die grösste einbeschriebene Ellipse eines konvexen Bereichs, Math. Ann. 115 (1938), 379-411.
  • 22. G. Bianchi, Determining convex bodies with piecewise ${C}^2$ boundary from their covariogram, preprint.
  • 23. N. M. Blachman, The convolution inequality for entropy powers, IEEE Trans. Information Theory 11 (1965), 267-271. MR 32:5449
  • 24. S. G. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), 1028-1052. CMP 2001:05
  • 25. B. Bollobás and I. Leader, Sums in the grid, Discrete Math. 162 (1996), 31-48. MR 97h:05179
  • 26. C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207-216. MR 53:3246
  • 27. -, Convex set functions in $d$-space, Period. Math. Hungar. 6 (1975), 111-136. MR 53:8359
  • 28. -, Capacitary inequalities of the Brunn-Minkowski type, Math. Ann. 263 (1983), 179-184. MR 84e:31005
  • 29. -, Geometric properties of some familiar diffusions in ${\mathbb {R} }^n$, Ann. Probab. 21 (1993), 482-489. MR 94c:60127
  • 30. -, Geometric inequalities in option pricing, Convex Geometric Analysis, ed. by K. M. Ball and V. Milman, Cambridge University Press, Cambridge, 1999, pp. 29-51. MR 2000d:91063
  • 31. -, Diffusion equations and geometric inequalities, Potential Anal. 12 (2000), 49-71. MR 2001d:60070
  • 32. H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures and the long-range order of one-dimensional plasma, Functional Integration and Its Applications, ed. by A. M. Arthurs, Clarendon Press, Oxford, 1975, pp. 1-14.
  • 33. -, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Adv. Math. 20 (1976), 151-173. MR 54:492
  • 34. -, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Anal. 22 (1976), 366-389. MR 56:8774
  • 35. V. V. Buldygin and A. B. Kharazishvili, Geometric Aspects of Probability Theory and Mathematical Statistics, Kluwer, Dordrecht, 2000. Russian original: 1985. MR 2001i:60004
  • 36. Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer, New York, 1988. Russian original: 1980. MR 89b:52020; MR 82d:52009
  • 37. H. Busemann, The isoperimetric problem for Minkowski area, Amer. J. Math. 71 (1949), 743-762. MR 11:200j
  • 38. L. A. Caffarelli, D. Jerison, and E. Lieb, On the case of equality in the Brunn-Minkowski inequality for capacity, Adv. Math. 117 (1996), 193-207. MR 97f:31011
  • 39. D. Cordero-Erausquin, Some applications of mass transport to Gaussian type inequalities, Arch. Rational Mech. Anal., to appear.
  • 40. -, Inégalité de Prékopa-Leindler sur la sphère, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 789-792. MR 2000k:26022
  • 41. D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), 219-257.
  • 42. M. H. M. Costa and T. M. Cover, On the similarity of the entropy power inequality and the Brunn-Minkowski inequality, IEEE Trans. Information Theory 30 (1984), 837-839. MR 86d:26029
  • 43. S. Dancs and B. Uhrin, On a class of integral inequalities and their measure-theoretic consequences, J. Math. Anal. Appl. 74 (1980), 388-400. MR 81g:26009
  • 44. -, On the conditions of equality in an integral inequality, Publ. Math. (Debrecen) 29 (1982), 117-132. MR 83m:26018
  • 45. S. Dar, A Brunn-Minkowski-type inequality, Geom. Dedicata 77 (1999), 1-9. MR 2000i:52021
  • 46. S. Das Gupta, Brunn-Minkowski and its aftermath, J. Multivariate Analysis 10 (1980), 296-318. MR 81m:26011
  • 47. A. Dembo, T. M. Cover, and J. A. Thomas, Information theoretic inequalities, IEEE Trans. Information Theory 37 (1991), 1501-1518. MR 92h:94005
  • 48. S. Dharmadhikari and K. Joag-Dev, Unimodality, convexity, and applications, Academic Press, New York, 1988. MR 89k:60020
  • 49. A. Dinghas, Über eine Klasse superadditiver Mengenfunktionale von Brunn-Minkowski-Lusternikschem Typus, Math. Zeit. 68 (1957), 111-125. MR 20:2668
  • 50. R. M. Dudley, Real Analysis and Probability, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1989. MR 91g:60001
  • 51. -, Metric marginal problems for set-valued or non-measurable variables, Probab. Theory Relat. Fields 100 (1994), 175-189. MR 95h:60006
  • 52. H. G. Eggleston, Convexity, Cambridge University Press, Cambridge, 1958. MR 23:A2123
  • 53. A. Ehrhard, Symétrisation dans l'espace de Gauss, Math. Scand. 53 (1983), 281-301. MR 85f:60058
  • 54. -, Élements extrémaux pour les inégalités de Brunn-Minkowski gaussiennes, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), 149-168. MR 88a:60041
  • 55. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992. MR 93f:28001
  • 56. H. Federer, Geometric Measure Theory, Springer, New York, 1969. MR 41:1976
  • 57. W. J. Firey, Polar means and a dual to the Brunn-Minkowski theorem, Canad. J. Math. 13 (1961), 444-453. MR 31:1613
  • 58. -, $p$-means of convex bodies, Math. Scand. 10 (1962), 17-24. MR 25:4416
  • 59. -, Shapes of worn stones, Mathematika 21 (1974), 1-11. MR 50:14487
  • 60. I. Fonseca, The Wulff theorem revisited, Proc. Roy. Soc. London Sect. A 432 (1991), 125-145. MR 92e:49053
  • 61. I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 125-136. MR 93c:49026
  • 62. B. R. Frieden, Physics from Fisher Information: A Unification, Cambridge University Press, New York, 1999. MR 2000c:81050
  • 63. R. J. Gardner, The Brunn-Minkowski inequality: A survey with proofs, available at http://www.ac.wwu.edu/~gardner.
  • 64. -, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), 435-445. MR 94e:52008
  • 65. -, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. 140 (1994), 435-447. MR 95i:52005
  • 66. -, Geometric Tomography, Cambridge University Press, New York, 1995. MR 96j:52006
  • 67. R. J. Gardner and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (2001), 3995-4024.
  • 68. R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytical solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. 149 (1999), 691-703. MR 2001b:52011
  • 69. R. J. Gardner and G. Zhang, Affine inequalities and radial mean bodies, Amer. J. Math. 120 (1998), 505-528. MR 99e:52006
  • 70. H. Groemer, Stability of geometric inequalities, Handbook of Convexity, ed. by P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, 1993, pp. 125-150. MR 94i:52011
  • 71. M. Gromov, Convex sets and Kähler manifolds, Advances in Differential Geometry and Topology, World Scientific Publishing, Teaneck, NJ, 1990, pp. 1-38. MR 92d:52018
  • 72. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083. MR 54:8263
  • 73. O.-G. Guleryuz, E. Lutwak, D. Yang, and G. Zhang, Information theoretic inequalities for contoured probability distributions, preprint.
  • 74. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957. MR 21:1561
  • 75. H. Hadwiger and D. Ohmann, Brunn-Minkowskischer Satz und Isoperimetrie, Math. Zeit. 66 (1956), 1-8. MR 18:595c
  • 76. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1959.
  • 77. R. Henstock and A. M. Macbeath, On the measure of sum sets, I. The theorems of Brunn, Minkowski and Lusternik, Proc. London Math. Soc. 3 (1953), 182-194. MR 15:109g
  • 78. D. Jerison, A Minkowski problem for electrostatic capacity, Acta Math. 176 (1996), 1-47. MR 97e:31003
  • 79. J. Kahn and N. Linial, Balancing extensions via Brunn-Minkowski, Combinatorica 11 (1991), 363-368. MR 93e:52017
  • 80. R. Kannan, L. Lovász, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Math. 13 (1995), 541-559. MR 96e:52018
  • 81. S. P. King, website at http://members.home.net/stephenk1/Outlaw/fisherinfo.html.
  • 82. J. F. C. Kingman and S. J. Taylor, Introduction to Measure and Probability, Cambridge University Press, Cambridge, 1973. MR 36:1601
  • 83. H. Knothe, Contributions to the theory of convex bodies, Michigan Math. J. 4 (1957), 39-52. MR 18:757b
  • 84. R. Lata\la, A note on the Ehrhard inequality, Studia Math. 118 (1996), 169-174. MR 97d:60027
  • 85. M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités, ed. by J. Azéma, M. Émery, M. Ledoux, and M. Yor, Lecture Notes in Mathematics 1709, Springer, Berlin, 1999, pp. 120-216. CMP 2000:16
  • 86. -, The Concentration of Measure Phenomenon, American Mathematical Society, Providence, RI, 2001.
  • 87. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, New York, 1991. MR 93c:60001
  • 88. L. Leindler, On a certain converse of Hölder's inequality. II, Acta Sci. Math. (Szeged) 33 (1972), 217-223.
  • 89. E. H. Lieb, Proof of an entropy conjecture of Wehrl, Commun. Math. Phys. 62 (1978), 35-41. MR 80d:82032
  • 90. -, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), 179-208. MR 91i:42014
  • 91. E. H. Lieb and M. Loss, Analysis, Second edition, American Mathematical Society, Providence, Rhode Island, 2001. MR 2001i:00001
  • 92. J. Lindenstrauss and V. D. Milman, The local theory of normed spaces and its applications to convexity, Handbook of Convex Geometry, ed. by P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, 1993, pp. 1149-1220. MR 95b:46012
  • 93. L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures Algorithms 4 (1993), 359-412. MR 94m:90091
  • 94. L. A. Lusternik, Die Brunn-Minkowskische Ungleichung für beliebige messbare Mengen, C. R. (Doklady) Acad. Sci. URSS 8 (1935), 55-58.
  • 95. E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), 531-538. MR 52:1528
  • 96. -, Width-integrals of convex bodies, Proc. Amer. Math. Soc. 53 (1975), 435-439. MR 52:4135
  • 97. -, A general isepiphanic inequality, Proc. Amer. Math. Soc. 90 (1984), 415-421. MR 85i:52005
  • 98. -, Volume of mixed bodies, Trans. Amer. Math. Soc. 294 (1986), 487-500. MR 87f:52017
  • 99. -, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261. MR 90a:52023
  • 100. -, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. (3) 60 (1990), 365-391. MR 90k:52024
  • 101. -, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowksi problem, J. Diff. Geom. 38 (1993), 131-150. MR 94g:52008
  • 102. -, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339 (1993), 901-916. MR 93m:51011
  • 103. -, Selected affine isoperimetric inequalities, Handbook of Convex Geometry, ed. by P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, 1993, pp. 151-176. MR 94h:52014
  • 104. -, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas, Adv. Math. 118 (1996), 244-294. MR 97f:52014
  • 105. E. Lutwak, D. Yang, and G. Zhang, The Brunn-Minkowski-Firey inequality for non-convex sets, preprint.
  • 106. -, The Cramer-Rao inequality for star bodies, Duke Math. J. 112 (2002), 59-81.
  • 107. -, On the ${L}_p$-Minkowski problem, preprint.
  • 108. -, Sharp affine ${L}_p$ Sobolev inequalities, preprint.
  • 109. -, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), 375-90. MR 2001j:52011
  • 110. -, ${L}_p$ affine isoperimetric inequalities, J. Diff. Geom. 56 (2000), 111-132.
  • 111. E. Lutwak and G. Zhang, Blaschke-Santaló inequalities, J. Diff. Geom. 47 (1997), 1-16. MR 2000c:52011
  • 112. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995. MR 96h:28006
  • 113. B. Maurey, Some deviation inequalities, Geom. Funct. Anal. 1 (1991), 188-197. MR 92g:60024
  • 114. R. J. McCann, A Convexity Theory for Interacting Gases and Equilibrium Crystals, Ph.D. dissertation, Princeton University, 1994.
  • 115. -, A convexity principle for interacting gases, Adv. Math. 128 (1997), 153-179. MR 98e:82003
  • 116. -, Equilibrium shapes for planar crystals in an external field, Comm. Math. Phys. 195 (1998), 699-723. MR 99j:73018
  • 117. P. McMullen, New combinations of convex sets, Geom. Dedicata 78 (1999), 1-19. MR 2000i:52009
  • 118. J. Mecke and A. Schwella, Inequalities in the sense of Brunn-Minkowski, Vitale for random convex bodies, preprint.
  • 119. M. Meyer, Maximal hyperplane sections of convex bodies, Mathematika 46 (1999), 131-136. MR 2000m:52006
  • 120. V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric Aspects of Functional Analysis, ed. by J. Lindenstrauss and V. D. Milman, Lecture Notes in Mathematics 1376, Springer, Heidelberg, 1989, pp. 64-104. MR 90g:52003
  • 121. V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Springer (Lecture Notes in Mathematics 1200), Berlin, 1986. MR 87m:46038
  • 122. M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Springer, New York, 1996. MR 98f:11011
  • 123. A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), 405-411. MR 99a:58074
  • 124. R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238. MR 58:18161
  • 125. F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), 101-174.
  • 126. F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), 361-400. MR 2001k:58076
  • 127. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, Cambridge, 1989. MR 91d:52005
  • 128. A. Prékopa, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math. (Szeged) 32 (1971), 301-316. MR 47:3628
  • 129. -, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1975), 335-343. MR 53:8357
  • 130. -, Stochastic Programming, Kluwer, Dordrecht, 1995. MR 97f:90001
  • 131. Y. Rinott, On convexity of measures, Ann. Probab. 4 (1976), 1020-1026. MR 55:1561
  • 132. I. Z. Ruzsa, The Brunn-Minkowski inequality and nonconvex sets, Geom. Dedicata 67 (1997), 337-348. MR 99b:52016
  • 133. M. Schmitt, On two inverse problems in mathematical morphology, Mathematical Morphology in Image Processing, ed. by E. R. Dougherty, Marcel Dekker, New York, 1993, pp. 151-169. MR 93j:68223
  • 134. M. Schmuckenschläger, An extremal property of the regular simplex, Convex Geometric Analysis, ed. by K. M. Ball and V. Milman, Cambridge University Press, New York, 1999, pp. 199-202. MR 2000a:52016
  • 135. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993. MR 94d:52007
  • 136. J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982. MR 87d:68106
  • 137. C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 623-656. Can be downloaded at http://www.math.washington.edu/ ~hillman/Entropy/infcode.html. MR 10:133e
  • 138. W. Sierpinski, Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105-111.
  • 139. A. J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon, Information and Control 2 (1959), 101-112. MR 21:7813
  • 140. A. Stancu, The discrete planar $L_0$-Minkowski problem, Adv. Math., to appear.
  • 141. D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, Akademie-Verlag, Berlin, 1987. MR 88j:60034b
  • 142. V. N. Sudakov and B. S. Tsirel'son, Extremal properties of half-spaces for spherically invariant measures, J. Soviet Math. 9 (1978), 9-18. Translated from Zap. Nauch. Sem. L.O.M.I. 41 (1974), 14-24. MR 51:1932
  • 143. S. J. Szarek and D. Voiculescu, Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality, Comm. Math. Phys. 178 (1996), 563-570. MR 97c:46082
  • 144. J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568-588. MR 58:12649
  • 145. Y. L. Tong, Probability inequalities in multivariate distributions, Academic Press, New York, 1980. MR 82k:60038
  • 146. N. S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 411-425. MR 95k:52013
  • 147. B. Uhrin, Extensions and sharpenings of Brunn-Minkowski and Bonnesen inequalities, Intuitive Geometry, Siófok, 1985, ed. by K. Böröczky and G. Fejes Tóth, Coll. Math. Soc. János Bolyai 48, North-Holland, Amsterdam, 1987, pp. 551-571. MR 89d:52028
  • 148. -, Curvilinear extensions of the Brunn-Minkowski-Lusternik inequality, Adv. Math. 109 (1994), 288-312. MR 95j:52017
  • 149. R. A. Vitale, The Brunn-Minkowski inequality for random sets, J. Multivariate Analysis 33 (1990), 286-293. MR 91h:60019
  • 150. -, The translative expectation of a random set, J. Math. Anal. Appl. 160 (1991), 556-562. MR 92i:60025
  • 151. R. Webster, Convexity, Oxford University Press, Oxford, 1994. MR 98h:52001
  • 152. Gaoyong Zhang, Intersection bodies and the Busemann-Petty inequalities in ${\mathbb{R} }^4$, Ann. of Math. 140 (1994), 331-346. MR 95i:52004
  • 153. -, The affine Sobolev inequality, J. Diff. Geom. 53 (1999), 183-202. MR 2001m:53136
  • 154. -, A positive solution to the Busemann-Petty problem in $\mathbb R^4$, Ann. of Math. 149 (1999), 535-543. MR 2001b:52010

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 26D15, 52A40

Retrieve articles in all journals with MSC (2000): 26D15, 52A40


Additional Information

R. J. Gardner
Affiliation: Department of Mathematics, Western Washington University, Bellingham, Washington 98225-9063
Email: gardner@baker.math.wwu.edu

DOI: https://doi.org/10.1090/S0273-0979-02-00941-2
Keywords: Brunn-Minkowski inequality, Minkowski's first inequality, Pr\'{e}kopa-Leindler inequality, Young's inequality, Brascamp-Lieb inequality, Barthe's inequality, isoperimetric inequality, Sobolev inequality, entropy power inequality, covariogram, Anderson's theorem, concave function, concave measure, convex body, mixed volume
Received by editor(s): February 1, 2001
Received by editor(s) in revised form: November 28, 2001
Published electronically: April 8, 2002
Additional Notes: Supported in part by NSF Grant DMS 9802388.
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society