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Supersymmetry is an idea that has played a critical role in many of the recent
developments in theoretical physics of interest to mathematicians. The third vol-
ume of The quantum theory of fields by Steven Weinberg [1] is an introduction to
supersymmetric field theory and supergravity. The first two volumes of the series
treat the essentials of quantum field theory. In this third volume, Weinberg has cre-
ated the most complete introduction to supersymmetry to date. Although the text
is aimed squarely at physicists, it should prove useful to mathematicians interested
in learning about supersymmetry in its natural physical setting. As a supplement,
to help bridge the cultural and language differences between physics and mathe-
matics, I would suggest the short lecture series by Freed [2]. My goal, in the course
of this review, is to convey both the essential idea behind supersymmetry and some
of the background needed to peruse the physics literature.

What is supersymmetry? The basic notion behind supersymmetry (SUSY) can
be described in the setting of quantum mechanics. As a starting point, let us
consider a particle in one dimension with position x moving in a potential well,
V (x). The time evolution of this system is governed by a Hamiltonian, H , which
takes the form

H =
1
2
p2 + V (x).(1)

The momentum, p, is a vector field that satisfies the commutation relation

[x, p] = xp− px = i.(2)

To avoid unimportant technical issues, let us assume that V → ∞ as |x| → ∞.
The states of this theory describe the possible quantum mechanical configurations
for the particle. Each state is described by a square normalizable function of x.
We also note that our Hamiltonian is Hermitian with respect to the standard inner
product on the Hilbert space of states.

To make this system supersymmetric, we need to add additional degrees of free-
dom of a quite different kind. Particles in nature come in two distinct flavors:
there are bosons and there are fermions. While bosons are described by conven-
tional commuting variables, fermions are described by variables that take values
in a Grassmann algebra. A collection of M real fermions in quantum mechanics
satisfies the quantization conditions:

{ψa, ψb} = ψaψb + ψbψa = δab, a = 1, . . . ,M.(3)

By contrast, additional bosonic degrees of freedom, labelled say y1, y2, . . . , would
satisfy commutation relations:

[x, yi] = 0, [yi, yj] = 0.(4)

That fermions satisfy anti-commutation rather than commutation relations is their
hallmark. In a system with bosons and fermions, we can define a conserved Z2
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charge measured by the operator (−1)F ,

(−1)F =
∏
a

ψa.(5)

A purely bosonic operator OB satisfies[
(−1)F ,OB

]
= 0,(6)

while a purely fermionic operator OF satisfies{
(−1)F ,OF

}
= 0.(7)

That (−1)F is conserved is the statement that it commutes with H , so H is a purely
bosonic operator. The Hilbert space of the theory can therefore be organized into
states with definite eigenvalue under (−1)F . Bosonic states have eigenvalue +1,
while fermionic states have eigenvalue −1.

We might now imagine modifying H by adding additional interactions which
preserve the condition that H be Hermitian. These interactions are operators
which are constructed from the fermions, ψa, and the boson, x. The Hamiltonian
must continue to commute with (−1)F , so these interactions can involve only even
numbers of fermions. Beyond this constraint, these interactions can be essentially
whatever we choose. For supersymmetry, however, we demand that the resulting
Hamiltonian satisfy the algebraic relations

{Qa, Qb} = Hδab, a, b = 1, . . . , N.(8)

Our supercharges, Qa, are also Hermitian operators, and the parameter N deter-
mines the degree of supersymmetry. A system with N = 1 has simple supersym-
metry. Systems with N > 1 have extended supersymmetry. Typically, our control
over a theory increases with the number of supersymmetries.

To supersymmetrize the Hamiltonian of equation (1), we can add an interaction
coupling two fermions to the boson, x, giving a new Hamiltonian,

Hsusy =
1
2
p2 + V (x) − i ∂

∂x

√
2V (x)ψ1ψ2.(9)

This Hamiltonian obeys the algebra

Hsusy = Q2,(10)

with supercharge

Q = ψ1p+ ψ2

√
2V (x).(11)

Note that Q is fermionic. It is, in essence, a ‘square-root’ of H . We can now
begin to see why supersymmetry is so powerful. From the algebra given in (8),
we see that the spectrum of any supersymmetric Hamiltonian, Hsusy, is bounded
from below (by zero). Further, supersymmetry requires that eigenstates of H with
non-zero energy eigenvalue appear in degenerate pairs. Given any state |E〉 with
energy eigenvalue E, we can construct a degenerate state, Q√

E
|E〉. Since Q itself

is fermionic, one of these states is bosonic while the other is fermionic. In this
way, supersymmetry maps bosons to fermions and vice-versa. Although arrived at
in a simplified setting, these essential features of supersymmetry generalize from
quantum mechanics to higher-dimensional field theories.

Weinberg begins his text not with supersymmetric quantum mechanics, but with
a short historical note. Supersymmetry has its roots in the early development of
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string theory. It was soon realized, however, that supersymmetry could be im-
plemented in conventional four-dimensional quantum field theories. The Standard
Model of particle physics constitutes the most important example of a theory that
can be supersymmetrized. The resulting theory, known as the ‘minimal supersym-
metric standard model’ (MSSM), remains one of the more promising candidates for
describing particle physics beyond the current Standard Model. There is a common
terminology associated to the pairing of bosons and fermions under supersymmetry.
In most cases, to an observed fermion of a supersymmetric theory, we associate a
‘sparticle’ superpartner. For example, electrons are leptons observed in the world
around us. In the context of a supersymmetric theory of leptons, the superpartner
of an electron is a ‘selectron’. Likewise, the superpartner of a quark is a ‘squark’.
For observed bosons, the appellation for the superpartner is different. We append
‘ino’ to the name of the boson; for example, the superpartner of a graviton – the
particle that we believe mediates the gravitational interaction – is a gravitino, while
the superpartner of a photon is a photino.

Clearly, supersymmetry is not an exact symmetry of the world around us. If
this were the case, we would have already observed the superpartners of light or
massless particles like the photon. Nevertheless, many physicists believe that su-
persymmetry will be observed as a fundamental symmetry of particle interactions
as we probe higher energy scales. It is also worth noting that our only consistent
theory of quantum gravity – namely, string theory – requires supersymmetry in its
formulation.

The initial discovery of supersymmetry was particularly surprising because it
avoids a famous ‘no-go’ theorem by Coleman and Mandula [3]. Quantum field the-
ories in D + 1 space-time dimensions consist of states that transform irreducibly
under the Poincaré group of rotations, boosts, and translations.1 Under reason-
able conditions, Coleman and Mandula argued that the only possible symmetries
of quantum field theory consist of the Poincaré group together with possible inter-
nal symmetries that commute with Poincaré. However, the theorem assumes that
all symmetries preserve the Z2 grading by fermion number. By contrast, super-
symmetry relates bosons to fermions, and hence evades the theorem. Weinberg’s
discussion of these points is remarkably detailed. He gives complete arguments
which are often simpler than those given in the original papers. The thoroughness
with which Weinberg develops his arguments is perhaps my favorite feature of this
text.

Supersymmetry algebras are the next topic of discussion. The N = 1 supersym-
metry algebra (10) of quantum mechanics generalizes to four space-time dimensions
(D = 3) in the following way:

{Qα, Q∗β} = 2σµαβPµ, α, β = 1, 2(12)

{Qα, Qβ} = 0.

A word on notation is in order: the σµ are the Pauli matrices with σ0 = −1. In a
convenient basis,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.(13)

1It is unreasonable for me to attempt an explanation of quantum field theory here. Fortu-
nately, there has been a substantial effort devoted to making quantum field theory accessible to
mathematicians. The proceeds of this effort appear in [4].
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The Pµ are space-time momenta, while the Qα are complex two component space-
time spinors. The space-time metric is the Minkowski metric with diagonal entries,
{−1, 1, 1, 1}. One of the annoying features of the literature on supersymmetry is
the bewildering array of notations and conventions. Whether one likes or dislikes
his choices, Weinberg is considerate enough to clearly state his conventions, which
are consistent with his first two volumes on quantum field theory.

In quantum field theory, there is a rather important correlation between the
statistics of a particle (Bose versus Fermi) and its spin. A particle described by
a quantum field theory is characterized by its mass and spin. The notion of spin
is an important one and merits an explanation. These two characteristics, mass
and spin, come naturally from representation theory in the following way: the
single particle states of the quantum field theory essentially describe a particle
moving with momentum P . These states form an irreducible representation of the
Poincaré group. Irreducible representations of Poincaré are labelled by two Casimir
invariants. The first Casimir is P ·P = −M2, where M is the mass of the particle.

The second invariant can be described as follows: while P · P is invariant under
the action of the Lorentz group, any particular momentum P is only left invariant
by a subgroup of the Lorentz group, Spin(3, 1). This subgroup is called the little
group of Spin(3, 1). In determining the spin of a particle, we need to consider two
distinct cases: in the case of massive particles where M 6= 0, it is not hard to see
that the little group is SU(2). The single particle states with a fixed momentum
P transform irreducibly under the little group. Let the dimension of this SU(2)
representation be 2j + 1. The quantum number j is the spin of the particle, and
−M2j(j + 1) is the second Casimir of the Poincaré group. If we boost to a frame
where the particle is stationary so only P 0 = M is non-zero, we see that spin indeed
describes how the particle rotates in three space.

For massless particles where P ·P = 0, the situation is different. The little group
which leaves any particular P invariant has three generators which we label J3, B1

and B2. In a convenient frame where the particle is moving along the third axis, J3

generates rotations around this axis, while B1 and B2 generate particular boosts.
These generators satisfy the Lie algebra relations

[B1, B2] = 0, [J3, B1] = iB2, [J3, B2] = −iB1.(14)

The representations of this algebra which correspond to physical particles are quite
restricted: B1 and B2 must act trivially on allowed representations. Further, the
eigenvalue of J3, known as the helicity of the particle, is quantized. The helicity
can be either integral or half-integral.

There is, however, a standard abuse of notation under which a massless particle
is assigned spin, as if it were massive. For example, a massless photon is a spin 1
particle even though it consists only of helicity ±1 states. Likewise, a graviton is
a spin 2 particle. With this caveat in mind, we can now state the spin-statistics
theorem which follows from quite general properties of quantum field theory: bosons
must have integral spin, while fermions must have half-integral spin.

As we see from (12), minimal supersymmetry in four dimensions requires four real
supercharges. Our next step, in tandem with Weinberg, is to study representations
of the minimal supersymmetry algebra. From the representations, we can determine
the combinations of particles needed to build supersymmetric field theories. There
are again two distinct cases. If we consider a multiplet of massive particles with
mass M , we can always boost to a frame where the particles are stationary. The
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only non-vanishing component of Pµ is again P 0 = M . In this convenient frame,
it is easy to construct representations of the resulting algebra,

{Qα, Q∗β} = 2δαβM.(15)

Take a Fock vacuum |0〉 satisfying Qα|0〉 = 0. By acting with Q∗, we build a
representation with states

|0〉, Q∗α|0〉, εαβQ∗αQ
∗
β |0〉.

Note that the Fock vacuum need not be invariant under the Lorentz group. This
representation of the supersymmetry algebra is reducible under the Lorentz group.
On decomposition to irreducible representations under Lorentz, we discover the
particle content of this supermultiplet. For example, if the Fock vacuum |0〉 is
invariant under the Lorentz group, we obtain the following fields: two scalar fields
with spin 0 corresponding to the states |0〉 and εαβQ∗αQ

∗
β|0〉, and one fermion with

spin 1/2, Q∗α|0〉.
Because this supermultiplet contains massive particles, there are no particularly

strong physical constraints on the permitted representations. For sufficiently large
masses, the spins of the constituent particles can be arbitrarily high without a
physical inconsistency appearing in the low-energy observed theory. The situation
is quite different for massless particles. We can still boost to a special frame where
Pµ = (E, 0, 0, E). The algebra of (12) becomes

{Qα, Q∗β} = 4E
(

1 0
0 0

)
αβ

.(16)

We see that half the supersymmetry generators are represented trivially. The size
of our representations is therefore reduced in comparision with the case of a massive
particle. On massless particles, there are strong physical constraints. Theories of
massless particles with spins greater than 2 are not believed to be consistent. We
should note that a theory with a spin 2 massless particle is necessarily a theory of
gravity. The spin 2 particle is the graviton.

We therefore impose the constraint that the spins of massless particles in a super-
multiplet not exceed this bound. However, if we increase the number of supersym-
metries beyond the minimal four supercharges, the maximum spin of particles in a
supermultiplet increases. As Weinberg describes in more detail, we can have an ex-
tended supersymmetry algebra with at most 32 real supercharges. This maximally
supersymmetric theory is quite unique. It has a single permitted representation.
Among the particles of this supermultiplet is a spin 2 particle, so this maximally
supersymmetric theory includes gravity. A theory of supersymmetry and gravity is
known as a theory of supergravity (SUGRA).

In four dimensions, theories with sixteen or fewer real supercharges need not
contain gravity. There is a profound difference between supersymmetric theories
with and without gravity. Without gravity, supersymmetry is a global symmetry:
we must perform the same supersymmetry transformation at each point in space-
time. With gravity, the situation is quite different. Supersymmetry becomes a local,
or gauge symmetry, in which the parameters of our supersymmetry transformation
are allowed to vary over space-time. The construction of supergravity theories is
quite involved, but Weinberg’s discussion in chapter 31 is a reasonable place to
start.
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To complete this brief introduction to supersymmetry, let us turn momentarily
to the Lagrangian formulation of supersymmetric theories. This is, by far, the most
common formalism for discussing field theory. Our quantum mechanical Hamilton-
ian of equation (9) will serve as an example. This Hamiltonian can be obtained
from the action

S =
∫
dt L(x, ψ)

=
∫
dt

{
1
2

(
dx

dt

)2

+
i

2

∑
i

ψi
dψi
dt
− V (x) + i

∂

∂x

√
2V (x)ψ1ψ2.

}
,

(17)

by a Legendre transformation. In the Lagrangian formalism, where L is the La-
grangian, we view x = x(t) and ψi = ψi(t) as fields rather than operators. As fields
in the Lagrangian, fermions obey the anti-commutation relations

{ψa, ψb} = 0.(18)

Supersymmetry transformations are parametrized by a Grassmann variable ε and
act on the fields in the following way:

δεx = −iεψ1, δεψ1 = ε
dx

dt
, δεψ2 = ε

√
2V (x).(19)

Under the action of any symmetry, the Lagrangian must vary into a total derivative.
It is not hard to check that the variations given in (19) define a symmetry of the
action (17) with ε time-independent. Closure of the supersymmetry algebra implies
that

[δε, δε′ ] = 2iεε′
d

dt
,(20)

when acting on any of the fields. It is a quite general feature of supersymmetry
that satisfying (20) on all the fields typically requires the use of the equations of
motion. For a theory defined by a Lagrangian, the equations of motion are the
Euler-Lagrange equations. In such situations, we say that the symmetry algebra
closes only on-shell, i.e., for fields satisfying their equations of motion. This is true
even for theories of free particles.

At this point, we should systematize the procedure for constructing supersym-
metric Lagrangians and extend it to higher-dimensional field theories. One way to
do this is by introducing the notion of superspace. Unfortunately, fascinating top-
ics like superspace, supersymmetry breaking, and applications like Seiberg-Witten
theory, are beyond the scope of this review. Fortunately, these topics and many
more can be found in Weinberg’s quite comprehensive text. These modern topics,
particularly the derivation of the Seiberg-Witten solution [5] and the discussion
of non-perturbative physics, largely differentiate Weinberg’s text from other classic
texts on supersymmetry and supergravity, namely, the book by Wess and Bagger [6]
and the book by West [7]. I hope the reader is sufficiently enticed to further explore
this beautiful subject.

References

[1] S. Weinberg, “The quantum theory of fields. Vol. 3: Supersymmetry”, Cambridge, UK:
Univ. Pr. (2000) 419 pp. MR 2001a:81258

[2] D. S. Freed, “Five lectures on supersymmetry”, Providence, USA: AMS (1999) 119 pp. MR
2000k:58015

http://www.ams.org/mathscinet-getitem?mr=2001a:81258
http://www.ams.org/mathscinet-getitem?mr=2000k:58015


BOOK REVIEWS 439

[3] S. R. Coleman and J. Mandula, “All Possible Symmetries of the S Matrix”, Phys. Rev. 159,
1251 (1967).

[4] P. Deligne et al., “Quantum fields and strings: A course for mathematicians. Vol. 1, 2”,
Providence, USA: AMS (1999) 1-1501. MR 2000e:81010

[5] N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and confine-
ment in N=2 supersymmetric Yang-Mills theory”, Nucl. Phys. B 426, 19 (1994) [Erratum-
ibid. B 430, 485 (1994)] [arXiv:hep-th/9407087]. MR 95m:81202a, MR 95m:81202b

[6] J. Wess and J. Bagger, “Supersymmetry and Supergravity”, 2nd ed., Princeton, USA: Univ.
Pr. (1992) 259 pp. MR 93a:81003

[7] P. West, “Introduction To Supersymmetry and Supergravity”, 2nd ed., Teaneck, NJ: World
Scientific (1990) 425 pp. MR 92f:81004

Savdeep Sethi

University of Chicago

E-mail address: sethi@theory.uchicago.edu

http://www.ams.org/mathscinet-getitem?mr=2000e:81010
http://www.ams.org/mathscinet-getitem?mr=95m:81202a
http://www.ams.org/mathscinet-getitem?mr=95m:81202b
http://www.ams.org/mathscinet-getitem?mr=93a:81003
http://www.ams.org/mathscinet-getitem?mr=92f:81004

	References

