Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A century of complex Tauberian theory


Author: J. Korevaar
Journal: Bull. Amer. Math. Soc. 39 (2002), 475-531
MSC (2000): Primary 40E05; Secondary 11M45, 30B50, 44A10, 47A10
DOI: https://doi.org/10.1090/S0273-0979-02-00951-5
Published electronically: July 8, 2002
MathSciNet review: 1920279
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Complex-analytic and related boundary properties of transforms give information on the behavior of pre-images. The transforms may be power series, Dirichlet series or Laplace-type integrals; the pre-images are series (of numbers) or functions.

The chief impulse for complex Tauberian theory came from number theory. The first part of the survey emphasizes methods which permit simple derivations of the prime number theorem, associated with the labels Landau-Wiener-Ikehara and Newman. Other important areas in complex Tauberian theory are associated with the names Fatou-Riesz and Ingham. Recent refinements have been motivated by operator theory and include local $H^1$and pseudofunction boundary behavior of transforms. Complex information has also led to better remainder estimates in connection with classical Tauberian theorems. Applications include the distribution of zeros and eigenvalues.


References [Enhancements On Off] (What's this?)

  • [ ] Abel, N. H.
  • [1826] Recherches sur la série $1+\frac{m}{1}x +\frac{m(m-1)}{1\cdot2}x^2+\frac{m(m-1)(m-2)} {1.\cdot2\cdot3}x^3+\cdots$. J. für Math. 1, 311-339. Oeuvres complètes, vol. I, pp 219-250. [Sec 1] Agmon, S.
  • [1953] Complex variable Tauberians. Trans. Amer. Math. Soc. 74, 444-481. [Sec 4] MR 14:869a
  • [1965] Lectures on elliptic boundary value problems. Van Nostrand, New York. [Sec 19] MR 31:2504 Agmon, S. and Kannai, P.
  • [1967] On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators. Israel J. Math. 5, 1-30. [Sec 16, 19] MR 36:1814 Allan, G. R., O'Farrell, A. G. and Ransford, T. J.
  • [1987] A Tauberian theorem arising in operator theory. Bull. London Math. Soc. 19, 537-545. [Sec 1, 13, 15] MR 89c:47003 Apostol, T. M.
  • [2000] A centennial history of the prime number theorem. Number theory, pp 1-14. Trends in Math., Birkhäuser, Basel. [Sec 1] MR 2001d:11092 Aramaki, J.
  • [1996] An extension of the Ikehara Tauberian theorem and its application. Acta Math. Hungar. 71, 297-326. [Sec 4] MR 97e:35125 Arendt, W. and Batty, C. J. K.
  • [1988] Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 306, 837-852. [Sec 1, 13, 15] MR 89g:47053
  • [1995] A complex Tauberian theorem and mean ergodic semigroups. Semigroup Forum 50, 351-366. [Sec 13] MR 96i:47016 Arendt, W., Batty, C. J. K., Hieber, M. and Neubrander, F.
  • [2001] Vector-valued Laplace transforms and Cauchy problems. Birkhäuser, Basel. [Sec 1, 13, 15] CMP 2002:09 Arendt, W. and Prüss, J.
  • [1992] Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations. SIAM J. Math. Anal. 23, 412-448. [Sec 13] MR 92m:47150 Avakumovic, V. G.
  • [1950] Bemerkung über einen Satz des Herrn T. Carleman. Math. Z. 53, 53-58. [Sec 19] MR 12:254a Bateman, P. T. and Diamond, H. G.
  • [1996] A hundred years of prime numbers. Amer. Math. Monthly 103, 729-741. [Sec 1] MR 97m:01036 Batty, C. J. K.
  • [1990] Tauberian theorems for the Laplace-Stieltjes transform. Trans. Amer. Math. Soc. 322, 783-804. [Sec 13] MR 91c:44001
  • [1994a] Some Tauberian theorems related to operator theory. Functional analysis and operator theory (Warsaw 1992), Banach Center Publ. 30, Warsaw, pp 21-34. [Sec 13] MR 95f:44001
  • [1994b] Asymptotic behaviour of semigroups of operators. Functional analysis and operator theory (Warsaw 1992), Banach Center Publ. 30, Warsaw, pp 35-52. [Sec 15] MR 95g:47058 Batty, C. J. K., van Neerven, J. and Räbiger, F.
  • [1998] Tauberian theorems and stability of solutions of the Cauchy problem. Trans. Amer. Math. Soc. 350, 2087-2103. [Sec 13] MR 98h:47055 Binder, C.
  • [1984] Alfred Tauber (1866-1942). Ein österreichischer Mathematiker. Jahrb. Überblicke Math. 1984, Math. Surv. 17, 151-166. [Sec 1] Bingham, N. H., Goldie, C. M. and Teugels, J. L.
  • [1987] Regular variation. Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge Univ. Press, Cambridge. (Paperback edition with additions, 1989.) [Sec 1, 17, 19] MR 90i:26003 Boas, R. P.
  • [1954] Entire functions. Academic Press, New York. [Sec 19] Bochner, S.
  • [1933] Ein Satz von Landau und Ikehara. Math. Z. 37, 1-9. [Sec 4, 6] Carleman, T.
  • [1934] Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes. C. R. du 8$^e$ Congrès des Math. Scand., Stockholm, pp 34-44. [Sec 19] Chandrasekharan, K.
  • [1968] Introduction to analytic number theory. Grundl. math. Wiss. vol. 148, Springer, Berlin. [Sec 4] MR 40:2593 Chill, R.
  • [1998] Tauberian theorems for vector-valued Fourier and Laplace transforms. Studia Math. 128, 55-69. [Sec 13] MR 98k:44001 Cízek, J.
  • [1999] On the Tauberian constant in the Ikehara theorem. Czechoslovak Math. J. 49 (124), 673-682. [Sec 4] MR 2001d:11091 Delange, H.
  • [1952] Encore une nouvelle démonstration du théorème taubérien de Littlewood. Bull. Sci. Math. (2) 76, 179-189. [Sec 1] MR 14:634g
  • [1954] Généralisation du théorème de Ikehara. Ann. Sci. École Norm. Sup. (3) 71, 213-242. [Sec 4] MR 16:921e
  • [1955] Théorèmes taubériens et applications arithmétiques. Mém. Soc. Roy. Liège (4) 16, 1-87. [Sec 4] MR 17:965c
  • [1997] Un théorème taubérien donnant des résultats équivalents au théorème des nombres premiers. Gaz. Math. No. 71, 39-58. [Sec 6] MR 98j:11068 Diamond, H. G.
  • [1972] On a Tauberian theorem of Wiener and Pitt. Proc. Amer. Math. Soc. 31, 152-158. [Sec 9] MR 45:4012
  • [1982] Elementary methods in the study of the distribution of prime numbers. Bull. Amer. Math. Soc. (N.S.) 7, 553-589. [Sec 1] MR 83m:10002 Doetsch, G.
  • [1937] Theorie und Anwendung der Laplace-Transformation. Grundl. math. Wiss. vol. 47, Springer, Berlin. [Sec 4] MR 5:119f
  • [1950] Handbuch der Laplace-Transformation, vol. I. Birkhäuser, Basel. [Sec 4] MR 13:230f Duren, P. L.
  • [1970] Theory of $H^p$ spaces, Academic Press, New York. [Sec 13] MR 42:3552 Elliott, P. D. T. A.
  • [1979] Probabilistic number theory, vol. 1. Grundl. math. Wiss. vol. 239, Springer, Berlin. [Sec 4] MR 82h:10002a Erdos, P.
  • [1949] On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A. 35, 374-384. [Sec 1] MR 10:595c Esterle, J.
  • [1983] Quasimultipliers, representations of $H^\infty$, and the closed ideal problem for commutative Banach algebras. In: Radical Banach algebras and automatic continuity, Lecture Notes in Math. nr 975, Springer, Berlin, pp 66-162. [Sec 15] MR 85g:46067 Esterle, J., Strouse, E. and Zouakia, F.
  • [1990] Theorems of Katznelson-Tzafriri type for contractions. J. Funct. Anal. 94, 273-287. [Sec 15] MR 92c:47016 Fatou, P.
  • [1905] Sur quelques théorèmes de Riemann. Comptes rendus Acad. Sci. Paris 140, 569-570. [Sec 1]
  • [1906] Séries trigonométriques et séries de Taylor. Acta Math. 30, 335-400. [Sec 1, 12] Freud, G.
  • [1951-4] Restglied eines Tauberschen Satzes. I, Acta Math. Acad. Sci. Hung. 2 (1951), 299-308; II, ibid. 3 (1953), 299-307; III, ibid. 5 (1954), 275-288. [Sec 1, 18] MR 14:361a, MR 14:958a, MR 17:260c Frobenius, G.
  • [1880] Über die Leibnitzsche Reihe. J. Reine Angew. Math. 89, 262-264. [Sec 1] Gaier, D.
  • [1953] Complex Tauberian theorems for power series. Trans. Amer. Math. Soc. 75, 48-68. [Sec 12] MR 15:113c Ganelius, T. H.
  • [1964] Tauberian theorems for the Stieltjes transform. Math. Scand. 14, 213-219. [Sec 19] MR 31:1496
  • [1971] Tauberian remainder theorems. Lect. Notes in Math. nr 232, Springer, Berlin. [Sec 1, 16, 19] MR 58:17647 Gel'fand, I. M.
  • [1941] Zur Theorie der Charaktere der abelschen topologischen Gruppen. Mat. Sbornik, N.S. 9 (51), 49-50. [Sec 15] MR 3:36d Graham, S. W. and Vaaler, J. D.
  • [1981] A class of extremal functions for the Fourier transform. Trans. Amer. Math. Soc. 265, 283-302. [Sec 1, 4, 5] MR 82i:42008 Hadamard, J.
  • [1896] Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques. Bull. Soc. Math. France (24), 199-220. [Sec 1] Halász, G.
  • [1967] Remarks to a paper of D. Gaier on gap theorems. Acta Sci. Math. (Szeged) 28, 311-322. [Sec 1] MR 36:4199
  • [1968] Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen. Acta Math. Acad. Sci. Hungar. 19, 365-403. [Sec 4] MR 37:6254 Hardy, G. H.
  • [1949] Divergent Series. Clarendon Press, Oxford. [Sec 1] MR 11:25a Hardy, G. H. and Littlewood, J. E.
  • [1914] Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive. Proc. London Math. Soc. (2) 13, 174-191. [Sec 1, 18]
  • [1918] Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math. 41, 119-196. [Sec 1]
  • [1929] Notes on the theory of series (XI): On Tauberian theorems. Proc. London Math. Soc. (2) 30, 23-37. [Sec 19] Heilbronn, H. and Landau, E.
  • [1933a] Bemerkung zur vorstehenden Arbeit von Herrn Bochner. Math. Z. 37, 10-16. [Sec 4, 6]
  • [1933b] Ein Satz über Potenzreihen. Math. Z. 37, 17. [Sec 17]
  • [1933c] Anwendungen der N. Wienerschen Methode. Math. Z. 37, 18-21. [Sec 4, 6] Heins, M.
  • [1968] Complex function theory. Academic Press, New York. [Sec 4] MR 39:413 Holt, J. J. and Vaaler, J. D.
  • [1996] The Beurling-Selberg extremal functions for a ball in Euclidean space. Duke Math. J. 83, 203-248. [Sec 5] MR 97f:30038 Hörmander, L.
  • [1983/5] The analysis of linear partial differential operators, vols 1-4. Grundl. math. Wiss. vols 256, 257, 274, 275, Springer, Berlin. [Sec 19] MR 85g:35002a, MR 85g:35002b, corrected reprint MR 95h:35255, corrected reprint MR 98f:35002 Ikehara, S.
  • [1931] An extension of Landau's theorem in the analytic theory of numbers. J. Math. and Phys. M.I.T. 10, 1-12. [Sec 1, 2, 4] Ingham, A. E.
  • [1932] The distribution of prime numbers. Cambridge Tracts in Math. no. 30, Cambridge Univ. Press. (Reprinted 1990.) [Sec 1, 2] MR 91f:11064
  • [1935] On Wiener's method in Tauberian theorems. Proc. London Math. Soc. (2) 38, 458-480. [Sec 1, 4, 6, 7, 9, 10, 12, 13]
  • [1936] Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41, 367-379. [Sec 1, 10, 11, 12, 20]
  • [1941] A Tauberian theorem for partitions. Ann. of Math. (2) 42, 1075-1090. [Sec 4] MR 3:166a
  • [1950] A further note on trigonometrical inequalities. Proc. Cambridge Phil. Soc. 46, 535-537. [Sec 12] MR 12:255b Jurkat, W. B.
  • [1956] Ein funktionentheoretischer Beweis für $O$-Taubersätze bei Potenzreihen. Arch. Math. 7, 122-125. [Sec 1] MR 18:31e
  • [1957] Über die Umkehrung des Abelschen Stetigkeitssatzes mit funktionentheoretischen Methoden. Math. Z. 67, 211-222. [Sec 1] MR 19:544a Karamata, J.
  • [1930a] Über die Hardy-Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes. Math. Z. 32, 319-320. [Sec 18]
  • [1930b] Sur un mode de croissance régulière des fonctions. Mathematica (Cluj) 4, 38-53. [Sec 17]
  • [1931] Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche and Stieltjessche Transformation betreffen. J. reine u. angew. Math. 164, 27-39. [Sec 19]
  • [1933] Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France 61, 55-62. [Sec 17]
  • [1934] Weiterführung der N. Wienerschen Methode. Math. Z. 38, 701-708. [Sec 7, 10]
  • [1936] Über einen Satz von Heilbronn und Landau. Publ. math. Univ. Belgrade 5, 28-38. [Sec 6] Katznelson, Y. and Tzafriri, L.
  • [1986] On power bounded operators. J. Funct. Anal. 68, 313-328. [Sec 1, 13, 14, 15] MR 88e:47006 Korevaar, J.
  • [1951] An estimate of the error in Tauberian theorems for power series. Duke Math. J. 18, 723-734. [Sec 1] MR 13:227e
  • [1953] Best $L^1$ approximation and the remainder in Littlewood's theorem. Indag. Math. 15, 281-293. [Sec 1, 18] MR 15:119c
  • [1954a] A very general form of Littlewood's theorem. Indag. Math. 16, 36-45. [Sec 1, 18] MR 15:698c
  • [1954b] Another numerical Tauberian theorem for power series. Indag. Math. 16, 46-56. [Sec 1, 12, 16, 17, 18] MR 15:698d
  • [1982] On Newman's quick way to the prime number theorem. Math. Intelligencer 4, 108-115. [Sec 1, 6, 7] MR 84b:10063 Korevaar, J., van Aardenne-Ehrenfest, T. and de Bruijn, N. G.
  • [1949] A note on slowly oscillating functions. Nieuw Arch. Wiskunde (2) 23, 77-86. [Sec 17] MR 10:358b Krainova, L. I.
  • [1984] A Tauberian theorem of Fatou type for power series in the form of explicit inequalities (Russian). Dokl. Akad. Nauk Tadzhik. SSR 27, 550-552. [Sec 17] MR 86e:30005 Landau, E.
  • [1908] Zwei neue Herleitungen für die asymptotische Anzahl der Primzahlen unter einer gegegenen Grenze. Sitz. Ber. Preuss. Akad. Wiss. Berlin, 746-764. [Sec 1, 2]
  • [1909] Handbuch der Lehre von der Verteilung der Primzahlen vols I, II. Teubner, Leipzig. (Second edition with an appendix by P. T. Bateman, Chelsea Publ. Co., New York, 1953.) [Sec 1, 2, 8]
  • [1912] Über einige neuere Grenzwertsätze. Rend. Palermo 34, 121-131. [Sec 6]
  • [1932a] Über den Wienerschen neuen Weg zum Primzahlsatz. Sitz.-Ber. Preuss. Akad. Wiss., Phys.-Math. Klasse, 1932, 514-521. [Sec 4, 6]
  • [1932b] Über Dirichletsche Reihen. Nachrichten Göttingen, 525-527. [Sec 4, 6] Landau, E. and Gaier, D.
  • [1986] Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, third enlarged edition. Springer, Berlin. (First and second edition 1916, 1929 by E. Landau.) [Sec 1, 2, 12] MR 88d:01046 Lang, S.
  • [1999] Complex analysis. Grad. Texts in Math., vol. 103, fourth edition. Springer, New York. [Sec 6] MR 99i:30001 Lavrik, A. F.
  • [1984] Methods of studying the law of distribution of primes (Russian). Trudy Mat. Inst. Steklov 163, 118-142. AMS Translation [1985] Proc. Steklov Inst. Math. 163, 141-167. [Sec 1] MR 86d:11070 Levin, B. Ja.
  • [1964] Distribution of zeros of entire functions. Transl. Math. Mono. 5, Amer. Math. Soc., Providence, RI. (Second edition 1980, original Russian edition 1956.) [Sec 19] MR 81k:30011 Levinson, N.
  • [1969] A motivated account of an elementary proof of the prime number theorem. Amer. Math. Monthly 76, 225-245. [Sec 1] MR 39:2712 Littlewood, J. E.
  • [1911] The converse of Abel's theorem on power series. Proc. London Math. Soc. (2) 9, 434-448. [Sec 1, 18]
  • [1971] The quickest proof of the prime number theorem. Acta Arith. 18, 83-86. [Sec 1] MR 45:3343 Lyubich, Yu. I. and Vu, Q. P.
  • [1988] Asymptotic stability of linear differential equations in Banach spaces. Studia Math. 88, 37-42. [Sec 15] MR 89e:47062 Malliavin, P.
  • [1962] Un théorème taubérien avec reste pour la transformation de Stieltjes. C. R. Acad. Sci. Paris 255, 2351-2352. [Sec 1, 16, 19] MR 26:1662 Montgomery, H. L.
  • [1978] The analytic principle of the large sieve. Bull. Amer. Math. Soc. 84, 547-567. [Sec 5] MR 57:5931
  • [1994] Ten lectures on the interface between analytic number theory and harmonic analysis. CBMS Regional Conf. Series in Math. vol. 84, Amer. Math. Soc., Providence, RI. [Sec 5] MR 96i:11002 Narkiewicz, W.
  • [2000] The development of prime number theory. Springer Monographs in Math., Springer, Berlin. [Sec 1] MR 2001c:11098 Newman, D. J.
  • [1980] Simple analytic proof of the prime number theorem. Amer. Math. Monthly 87, 693-696. [Sec 1, 6, 7] MR 82h:10056
  • [1998] Analytic number theory. Grad. Texts in Math. vol. 177, Springer, New York. [Sec 6] MR 98m:11001 Paley, R. E. A. C. and Wiener, N.
  • [1934] Fourier transforms in the complex domain. Amer. Math. Soc. Colloq. Publ. vol. 19, Amer. Math. Soc., New York. [Sec 5] Pitt, H. R.
  • [1958] Tauberian theorems. Oxford Univ. Press. [Sec 9, 10, 11] MR 21:5109 Pleijel, Å.
  • [1963] On a theorem of P. Malliavin. Israel J. Math. 1, 166-168. [Sec 1, 16, 19] MR 29:5023 Postnikov, A. G.
  • [1953] A Tauberian theorem for Dirichlet series (Russian). Doklady Akad. Nauk SSSR (N.S.) 92, 487-490. [Sec 1, 16, 18] MR 15:951b
  • [1979] Tauberian theory and its applications (Russian). Trudy Mat. Inst. Steklov 144, 147 pp. English transl.: Proc. Steklov Inst. Math. 1980, no. 2. [Sec 1, 12, 16, 17, 18] MR 82f:40012b Raikov, D.
  • [1938] Generalization of the Ikehara-Landau theorem (Russian). Mat. Sbornik. Recueil math. Akad. Nauk SSSR, N.S. 3, 559-568. [Sec 4] Ransford, T. J.
  • [1988] Some quantitative Tauberian theorems for power series. Bull. London Math. Soc. 20, 37-44. [Sec 13] MR 89g:30005 Riemann, B.
  • [1892] Gesammelte mathematische Werke und wissenschaftlicher Nachlass (German). Teubner, Leipzig. (Reprinted by Dover Publ., New York, 1953.) [Sec 12] Riesz, M.
  • [1909] Sur les séries de Dirichlet et les séries entières. C. R. Acad. Sci. Paris 149, 909-912. [Sec 1, 12]
  • [1911] Über einen Satz des Herrn Fatou. J. reine u. angew. Math. 140, 89-99. [Sec 1, 12]
  • [1916] Ein Konvergenzsatz für Dirichletsche Reihen. Acta Math. 40, 349-361. [Sec 1, 12]
  • [1924] Über die Summierbarkeit durch typische Mittel. Acta Litt. ac Scient. Univ. Hung. 2, 18-31. [Sec 12] Selberg, A.
  • [1949] An elementary proof of the prime-number theorem. Ann. of Math. (2) 50, 305-313. [Sec 1] MR 10:595b
  • [1991] Collected papers, vol. 2. Springer, Berlin. [Sec 5] MR 95g:01032 Seneta, E.
  • [1976] Regularly varying functions. Lecture Notes in Math., vol. 508, Springer, Berlin. [Sec 17] MR 56:12189 Subhankulov, M. A.
  • [1960] Tauberian theorems with remainder term. Mat. Sbornik 52 (94), 823-846; Amer. Math. Soc. Transl. (2) 26 (1963), 311-338. [Sec 1, 16, 18] MR 22:12334, MR 27:1745
  • [1964] On a theorem of Littlewood (Russian). Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk 1, 22-30. [Sec 1, 18] MR 29:5025
  • [1973] Tauberian theorems of Landau-Ikehara type and their connection with the distribution of primes (Russian). Baskir. Gos. Ucen. Zap. 74, 47-69. [Sec 4] MR 57:253
  • [1976] Tauberian theorems with remainder (Russian). Izdat. Nauka, Moscow. [Sec 1, 4, 16, 18, 19] MR 58:29565 Subhankulov, M. A. and An, F. I.
  • [1974] Complex Tauberian theorems for the one-sided and two-sided Stieltjes transform (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 38, 138-169. (English translation: Math. USSR-Izv. 8 (1975), 145-176.) [Sec 19] MR 51:6209 Sz.-Nagy, B. and Foias, C.
  • [1970] Harmonic analysis of operators on Hilbert space. North-Holland Publ. Co., Amsterdam. [Sec 15] MR 43:947 Tauber, A.
  • [1897] Ein Satz aus der Theorie der unendlichen Reihen. Monatshefte Math. u. Phys. 8, 273-277. [Sec 1] Tenenbaum, G.
  • [1995] Introduction to analytic and probabilistic number theory. Cambridge Univ. Press. [Sec 4] MR 97e:11005b Tenenbaum, G. and Mendès France, M.
  • [2000] The prime numbers and their distribution. Student Math. Library vol. 6, Amer. Math. Soc., Providence, R.I. (Translation of French edition of 1997.) [Sec 1] MR 2001j:11086 Titchmarsh, E. C.
  • [1927] On integral functions with real negative zeros. Proc. London Math. Soc. (2) 26, 185-200. [Sec 19]
  • [1939] The theory of functions. Oxford Univ. Press. (Second edition.) [Sec 12]
  • [1958] Eigenfunction expansions associated with second-order differential equations, Part II. Clarendon Press, Oxford. [Sec 19] MR 20:1065 Vaaler, J. D.
  • [1985] Some extremal functions in Fourier analysis. Bull. Amer. Math. Soc. (N.S.) 12, 183-216. [Sec 5] MR 86g:42005 Valiron, G.
  • [1914] Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions à correspondance régulière. Ann. Toulouse (3) 5, 117-257. [Sec 19] de la Vallée Poussin, C.
  • [1896] Recherches analytiques sur la théorie des nombres premiers, I. Ann. Soc. Sci. Bruxelles 20:2, 183-256. [Sec 1] Vladimirov, V. S., Drozhzhinov, Yu. N. and Zav'yalov, B. I.
  • [1986] Multidimensional Tauberian theorems for generalized functions (Russian). Nauka, Moscow, 1986. (English translation: Tauberian theorems for generalized functions. Kluwer, Dordrecht, 1988.) [Sec 1] MR 87m:46092, MR 89j:46043 Widder, D. V.
  • [1941] The Laplace transform. Princeton Univ. Press, Princeton. [Sec 4] MR 3:232d Wiener, N.
  • [1928] A new method in Tauberian theorems. J. Math. and Phys. M.I.T. 7, 161-184. [Sec 1, 4]
  • [1932] Tauberian theorems. Ann. of Math. 33, 1-100. [Sec 1, 4]
  • [1933] The Fourier integral and certain of its applications. Cambridge Univ. Press, Cambridge. [Sec 1, 4] Wiener, N. and Pitt, H. R.
  • [1939] A generalization of Ikehara's theorem. J. Math. and Phys. M.I.T. 17 (1939), 247-258. [Sec 4, 9] Young, W. H.
  • [1918] On restricted Fourier series and the convergence of power series. Proc. London Math. Soc. 17, 353-366. [Sec 12] Zagier, D.
  • [1997] Newman's short proof of the prime number theorem. Amer. Math. Monthly 104, 705-708. [1, 6, 7] MR 98j:11069 Zeller, K. and Beekmann, W.
  • [1970] Theorie der Limitierungsverfahren. Ergebn. Math. u. Grenzgebiete vol. 15, Springer, Berlin. (First edition 1958.) [Sec 12] MR 41:8863 Zygmund, A.
  • [1959] Trigonometric series. Cambridge Univ. Press. (Second edition.) [Sec 12] MR 21:6498

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 40E05, 11M45, 30B50, 44A10, 47A10

Retrieve articles in all journals with MSC (2000): 40E05, 11M45, 30B50, 44A10, 47A10


Additional Information

J. Korevaar
Affiliation: Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands
Email: korevaar@science.uva.nl

DOI: https://doi.org/10.1090/S0273-0979-02-00951-5
Received by editor(s): June 28, 2001
Received by editor(s) in revised form: February 22, 2002
Published electronically: July 8, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society