Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Ranks of elliptic curves


Authors: Karl Rubin and Alice Silverberg
Journal: Bull. Amer. Math. Soc. 39 (2002), 455-474
MSC (2000): Primary 11G05; Secondary 11-02, 14G05, 11G40, 14H52
DOI: https://doi.org/10.1090/S0273-0979-02-00952-7
Published electronically: July 8, 2002
MathSciNet review: 1920278
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a general survey of ranks of elliptic curves over the field of rational numbers. The rank is a measure of the size of the set of rational points. The paper includes discussions of the Birch and Swinnerton-Dyer Conjecture, the Parity Conjecture, ranks in families of quadratic twists, and ways to search for elliptic curves of large rank.


References [Enhancements On Off] (What's this?)

  • 1. A. O. L. Atkin, F. Morain, Elliptic curves and primality proving, Math. Comp. 61 (1993), no. 203, 29-68. MR 93m:11136
  • 2. G. Billing, Beiträge zur arithmetischen Theorie der ebenen kubischen Kurven vom Geschlechte eins, Nova Acta Reg. Soc. Sc. Upsaliensis (4) 11 (1937), No. 1.
  • 3. B. Birch, H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew. Math. 212 (1963), 7-25. MR 26:3669
  • 4. -, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79-108. MR 31:3419
  • 5. C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over ${\mathbf Q}$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939. MR 2002d:11058
  • 6. A. Brumer, K. Kramer, The rank of elliptic curves, Duke Math. J. 44 (1977), no. 4, 715-743. MR 56:15658
  • 7. J. W. S. Cassels, Arithmetic on curves of genus $1$. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95-112. MR 29:1214
  • 8. -, Arithmetic on an elliptic curve, in Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler (1963), 234-246. MR 31:167
  • 9. J. B. Conrey, J. P. Keating, M. O. Rubinstein, N. C. Snaith, On the frequency of vanishing of quadratic twists of modular $L$-functions, preprint.
  • 10. C. Cornut, Mazur's conjecture on higher Heegner points, Invent. Math. 148 (2002), 495-523.
  • 11. N. Elkies, Heegner point computations, in Algorithmic Number Theory (ANTS-1), Lect. Notes in Comp. Sci. 877, Springer-Verlag, Berlin (1994), 122-133. MR 96f:11080
  • 12. -, http://www.math.harvard.edu/$\sim$elkies/compnt.html.
  • 13. S. Fermigier, Un exemple de courbe elliptique définie sur ${{\mathbf Q}}$ de rang $\geq 19$, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 6, 719-722. MR 93i:11067
  • 14. -, Une courbe elliptique définie sur ${\mathbf Q}$ de rang $\geq 22$, Acta Arith. 82 (1997), no. 4, 359-363. MR 98j:11041
  • 15. D. Goldfeld, Conjectures on elliptic curves over quadratic fields, in Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), M. B. Nathanson, ed., Lect. Notes in Math. 751, Springer-Verlag, Berlin (1979), 108-118. MR 81i:12014
  • 16. -, Sur les produits partiels eulériens attachés aux courbes elliptiques, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 14, 471-474. MR 84d:14031
  • 17. S. Goldwasser, J. Kilian, Almost all primes can be quickly certified, in Proc. 18th STOC (Berkeley, May 28-30, 1986), ACM, New York, 1986, 316-329.
  • 18. -, Primality testing using elliptic curves, J. ACM 46 (1999), no. 4, 450-472. MR 2002e:11182
  • 19. F. Gouvêa, B. Mazur, The square-free sieve and the rank of elliptic curves, J. Amer. Math. Soc. 4 (1991), no. 1, 1-23. MR 92b:11039
  • 20. B. H. Gross, D. B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225-320. MR 87j:11057
  • 21. F. J. Grunewald, R. Zimmert, Über einige rationale elliptische Kurven mit freiem Rang $\geq 8$, J. Reine Angew. Math. 296 (1977), 100-107. MR 57:6028
  • 22. H. Hasse, Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F. K. Schmidtschen Kongruenzzetafunktionen in gewissen eliptischen Fällen. Vorläufige Mitteilung, Nachr. Ges. Wiss. Göttingen I, Math.-phys. Kl. Fachgr. I Math. Nr. 42 (1933), 253-262 (# 38 in H. Hasse, Mathematische Abhandlungen, Band 2, Walter de Gruyter, Berlin-New York, 1975). MR 57:5648b
  • 23. -, Abstrakte Begründung der komplexen Multiplikation und Riemannsche Vermutung in Funktionenkörpen, Abh. Math. Sem. Univ. Hamburg. 10 (1934), 325-348 (# 40 in Helmut Hasse Mathematische Abhandlungen, Band 2, Walter de Gruyter, Berlin-New York, 1975). MR 57:5648b
  • 24. D. R. Heath-Brown, The size of Selmer groups for the congruent number problem. II, Invent. Math. 118 (1994), no. 2, 331-370. MR 95h:11064
  • 25. T. Honda, Isogenies, rational points and section points of group varieties, Japan. J. Math., 30 (1960), 84-101. MR 27:5762
  • 26. N. M. Katz, P. Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), no. 1, 1-26. MR 2000f:11114
  • 27. S. Kihara, On an infinite family of elliptic curves with rank $\geq 14$ over ${{\mathbf Q}}$, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 2, 32. MR 98d:11059
  • 28. -, On an elliptic curve over ${\mathbf Q}(t)$ of rank $\geq 14$, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 4, 50-51. MR 2002a:11057
  • 29. N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), no. 177, 203-209. MR 88b:94017
  • 30. -, Introduction to elliptic curves and modular forms, 2nd edition, Graduate Texts in Mathematics 97, Springer-Verlag, New York, 1993. MR 94a:11078
  • 31. V. A. Kolyvagin, Finiteness of $E({{\mathbf Q}})$ and ${\Sh}(E,{{\mathbf Q}})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522-540, 670-671 (= Math. USSR - Izvestija 32 (1989), no. 3, 523-541). MR 89m:11056
  • 32. -, Euler systems, in The Grothendieck Festschrift (Vol. II), P. Cartier et al., eds., Prog. in Math. 87, Birkhäuser, Boston (1990), 435-483. MR 92g:11109
  • 33. K. Kramer, Arithmetic of elliptic curves upon quadratic extension, Trans. Amer. Math. Soc. 264 (1981), no. 1, 121-135. MR 82g:14028
  • 34. D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. 33 (1976), no. 2, 193-237. MR 55:7910
  • 35. H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987), no. 3, 649-673. MR 89g:11125
  • 36. E. Lutz, Sur l'equation $y^2=x^3-Ax-B$ dans les corps $p$-adic, J. Reine Angew. Math. 177 (1937), 238-247.
  • 37. R. Martin, W. McMillen, posting to Number Theory server, March 16, 1998.
  • 38. -, posting to Number Theory server, May 2, 2000.
  • 39. B. Mazur, Modular curves and the Eisenstein ideal, Publ. math. IHES 47 (1977), 33-186. MR 80c:14015
  • 40. J.-F. Mestre, Construction d'une courbe elliptique de rang $\geq 12$, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 12, 643-644. MR 84b:14019
  • 41. -, Formules explicites et minorations de conducteurs de variétés algébriques, Comp. Math. 58 (1986), no. 2, 209-232. MR 87j:11059
  • 42. -, Courbes elliptiques de rang $\geq 11$ sur ${{\mathbf Q}}(t)$, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 3, 139-142. MR 92j:11052
  • 43. -, Courbes elliptiques de rang $\geq 12$ sur ${{\mathbf Q}}(t)$, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 4, 171-174. MR 92m:11052
  • 44. -, Un exemple de courbe elliptique sur ${{\mathbf Q}}$ de rang $\geq 15$, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 6, 453-455. MR 93b:11071
  • 45. -, Rang de courbes elliptiques d'invariant donné, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 12, 919-922. MR 93e:11075
  • 46. -, Rang de certaines familles de courbes elliptiques d'invariant donné, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 8, 763-764. MR 99j:11063
  • 47. -, Berkeley Number Theory Seminar, September 15, 2000.
  • 48. V. S. Miller, Use of elliptic curves in cryptography, in Advances in cryptology--CRYPTO '85, Lect. Notes in Comp. Sci. 218, Springer-Verlag, Berlin (1986), 417-426. MR 88b:68040
  • 49. L. J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Cambridge Philos. Soc. 21 (1922), 179-192.
  • 50. K. Nagao, Examples of elliptic curves over ${{\mathbf Q}}$ with rank $\geq 17$, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 9, 287-289. MR 93m:11046
  • 51. -, An example of elliptic curve over ${{\mathbf Q}}$ with rank $\ge 20$, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 8, 291-293. MR 95a:11052
  • 52. -, An example of elliptic curve over ${{\mathbf Q}}(T)$ with rank $\geq 13$, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 5, 152-153. MR 95e:11064
  • 53. K. Nagao, T. Kouya, An example of elliptic curve over ${\mathbf Q}$ with rank $\geq 21$, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 4, 104-105. MR 95e:11063
  • 54. T. Nagell, Solution de quelque problèmes dans la théorie arithmétique des cubiques planes du premier genre, Wid. Akad. Skrifter Oslo I (1935), No. 1, 1-25.
  • 55. J. Nekovár, On the parity of ranks of Selmer groups. II, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 2, 99-104. MR 2002e:11060
  • 56. A. Néron, Problèmes arithmétiques et géométriques rattachés à la notion de rang d'une courbe algébrique dans un corps, Bull. Soc. Math. France 80 (1952), 101-166. MR 15:151a
  • 57. -, Propriétés arithmétiques de certaines familles de courbes algébriques, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, pp. 481-488, Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam, 1956. MR 19:321b
  • 58. D. E. Penney, C. Pomerance, A search for elliptic curves with large rank, Math. Comp. 28 (1974), 851-853. MR 51:12861
  • 59. -, Three elliptic curves with rank at least seven, Math. Comp. 29 (1975), 965-967. MR 51:12862
  • 60. H. Poincaré, Sur les propriétés arithmétiques des courbes algébriques, J. Math. Pures Appl., Ser. 5, vol. 7 (1901), 161-233.
  • 61. N. Rogers, Rank computations for the congruent number elliptic curves, Exper. Math. 9 (2000), no. 4, 591-594. MR 2001k:11104
  • 62. D. E. Rohrlich, Galois theory, elliptic curves, and root numbers, Comp. Math. 100 (1996), no. 3, 311-349. MR 97m:11075
  • 63. K. Rubin, Right triangles and elliptic curves, to appear in Bay Area Math Adventures, D. F. Hayes, ed., MAA.
  • 64. K. Rubin, A. Silverberg, Ranks of elliptic curves in families of quadratic twists, Exper. Math. 9 (2000), no. 4, 583-590. MR 2001k:11105
  • 65. -, Rank frequencies for quadratic twists of elliptic curves, Exper. Math. 10 (2001), no. 4, 559-569.
  • 66. A. Silverberg, Open questions in arithmetic algebraic geometry, in Arithmetic Algebraic Geometry (Park City, UT, 1999), IAS/Park City Mathematics Series 9, AMS, Providence, RI (2001), 85-142.
  • 67. J. H. Silverman, Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983), 197-211. MR 84k:14033
  • 68. -, The arithmetic of elliptic curves, Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986. MR 87g:11070
  • 69. C. L. Stewart, J. Top, On ranks of twists of elliptic curves and power-free values of binary forms, J. Amer. Math. Soc. 8 (1995), no. 4, 943-973. MR 95m:11055
  • 70. J. T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179-206. MR 54:7380
  • 71. J. T. Tate, I. R. Safarevic, The rank of elliptic curves, Dokl. Akad. Nauk SSSR 175 (1967), no. 4, 770-773 (= Soviet Math. Dokl. 8 (1967), no. 4, 917-920). MR 38:5790
  • 72. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), no. 3, 553-572. MR 96d:11072
  • 73. J. B. Tunnell, A classical Diophantine problem and modular forms of weight $3/2$, Invent. Math. 72 (1983), no. 2, 323-334. MR 85d:11046
  • 74. V. Vatsal, Special values of anticyclotomic $L$-functions, preprint.
  • 75. A. Weil, Number theory, an approach through history, Birkhäuser, Boston, 1984. MR 85c:01004
  • 76. A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), no. 3, 443-551. MR 96d:11071
  • 77. A. Wiman, Über den Rang von Kurven $y\sp 2=x(x+a)(x+b)$, Acta Math. 76 (1945), 225-251. MR 7:70g
  • 78. -, Über rationale Punkte auf Kurven $y\sp 2=x(x\sp 2-c\sp 2)$, Acta Math. 77 (1945), 281-320. MR 7:323b
  • 79. -, Über rationale Punkte auf Kurven dritter Ordnung vom Geschlechte Eins, Acta Math. 80 (1948), 223-257. MR 10:472c
  • 80. D. Zagier, The Birch-Swinnerton-Dyer conjecture from a naive point of view, in Arithmetic Algebraic Geometry, G. van der Geer et al., eds., Prog. in Math. 89, Birkhäuser, Boston (1991), 377-390. MR 92c:11063

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 11G05, 11-02, 14G05, 11G40, 14H52

Retrieve articles in all journals with MSC (2000): 11G05, 11-02, 14G05, 11G40, 14H52


Additional Information

Karl Rubin
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
Email: rubin@math.stanford.edu

Alice Silverberg
Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
Email: silver@math.ohio-state.edu

DOI: https://doi.org/10.1090/S0273-0979-02-00952-7
Received by editor(s): January 5, 2002
Received by editor(s) in revised form: February 1, 2002
Published electronically: July 8, 2002
Additional Notes: The authors thank the NSF (grants DMS-9800881 and DMS-9988869), the Alexander von Humboldt Foundation, and the Universität Erlangen-Nürnberg. Silverberg also thanks the NSA (grant MDA904-99-1-0007), MSRI, and AIM
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society