Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: J. Bourgain
Title: Global solutions of nonlinear Schrödinger equations
Additional book information: Amer. Math. Soc., Providence, RI, 1999, viii+182 pp., ISBN 0-8218-1919-4, $35.00

References [Enhancements On Off] (What's this?)

  • 1. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I, Geom. Func. Anal. 3 (1993), 107-156. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II, Geom. Func. Anal. 3 (1993), 209-262. MR 95d:35160a, MR 95d:35160b
  • 2. J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, IMRN 6 (1996), 277-304. MR 97k:35016
  • 3. J. Bourgain, On the growth in time of Sobolev norms of smooth solutions of nonlinear Schrödinger equations in ${\mathbb R}^{d}$, J. Analyse Math. 72 (1997), 299-310. MR 98j:35163
  • 4. J. Bourgain, On the growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential, J. Analyse Math. 77 (1999), 315-348. MR 2002a:35045
  • 5. J. Bourgain, On the dimension of Kakeya sets and related maximal inequalities, Geom. Funct. Anal. 9 (1999), no. 2, 256-282. MR 2000b:42013
  • 6. T. Cazenave, F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^{s}$, Nonlin. Anal. 14 (1990), 807-836. MR 91j:35252
  • 7. T. Cazenave, F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H\sp 1$, Manuscripta Math. 61, no. 4 (1988), 477-494. MR 89j:35114
  • 8. H. Chihara, Local existence for semilinear Schrödinger equations, Math. Japonica 42 (1995), 35-52. MR 96d:35128
  • 9. H. Chihara, Smoothing effects of dispersive pseudodifferential equations, preprint (2002).
  • 10. J. Colliander, J. Delort, C. Kenig, G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), no. 8, 3307-3325. MR 2002d:35186
  • 11. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness for Schrödinger equations with derivatives, SIAM J. Math. Anal. 3 (2001), 649-669.
  • 12. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, A refined global well-posedness result for Schrödinger equations with derivatives, To appear in SIAM J. Math. Anal. (2002).
  • 13. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for KdV and modified KdV on ${\mathbb R}$ and ${\mathbb T}$, preprint (2002).
  • 14. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Almost Conservation Laws and Global Rough Solutions to a Nonlinear Schrödinger Equation, preprint (2002).
  • 15. P. Constantin, J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), 413-446. MR 89d:35150
  • 16. J. Ginibre, An introduction to nonlinear Schrödinger equations, Nonlinear waves (Sapporo, 1995), 85-133. Gakkotosho, Tokyo, 1997. MR 99a:35235
  • 17. R. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797. MR 57:842
  • 18. M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math. 132(2) (1990), no. 3, 485-509. MR 92c:35080
  • 19. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347. MR 87j:53053
  • 20. N.J. Hitchin, G.B. Segal, R.S. Ward, Integrable Systems, Oxford Graduate Texts in Mathematics, 4 (1999). MR 2000g:37003
  • 21. T. Kato, On the Cauchy problem for (generalized) KdV equation, Advances in Math. Supp. Studies, Studies in Applied Math. 8 (1983), 93-128. MR 86f:35160
  • 22. N. Katz, T. Tao, Bounds on arithmetic projections, and applications to the Kakeya conjecture, Math. Res. Lett. 6 (1999), no. 5-6, 625-630. MR 2000m:28006
  • 23. M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120(5) (1998), 955-980. MR 2000d:35018
  • 24. C.E. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69. MR 92d:35081
  • 25. C.E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620. MR 94h:35229
  • 26. C.E. Kenig, G. Ponce, L. Vega, Small solutions to nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré 10 (1993), 255-288. MR 94h:35238
  • 27. C.E. Kenig, G. Ponce, L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math. 134 (1998), 489-545. MR 99k:35166
  • 28. C.E. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106, no. 3 (2001), 617-633. MR 2002c:35265
  • 29. S. Kuksin, Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDEs, Comm. Math. Phys. 167 (1995), no. 3, 531-552. MR 96e:58060
  • 30. S. Kuksin, On squeezing and flow of energy for nonlinear wave equations, Geom. Funct. Anal. 5 (1995), no. 4, 668-7 MR 96d:35091.
  • 31. B. LeMesurier, G. Papanicolaou, C. Sulem, P.-L. Sulem, The focusing singularity of the nonlinear Schrödinger equation, Directions in partial differential equations (Madison, WI, 1985), 159-201, Publ. Math. Res. Center Univ. Wisconsin, 54, Academic Press, Boston, MA, (1987). MR 90i:35249
  • 32. H. Lindblad, Sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993), no. 2, 503-539. MR 94h:35165
  • 33. Y. Martel, F. Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. 79(9) (2000), no. 4, 339-425. MR 2001i:37102
  • 34. Y. Martel, F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219-254. CMP 2002:11
  • 35. Y. Martel, F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. Funct. Anal. 11 (2001), no. 1, 74-123. MR 2002g:35182
  • 36. F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129 (1990), 223-240. MR 91e:35195
  • 37. F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), 427-453. MR 94b:35262
  • 38. F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14 (2001), no. 3, 555-578. MR 2002f:35193
  • 39. F. Merle, P. Raphael, Sharp upper bound on the blow-up rate for critical nonlinear Schrödinger equation, preprint (2002).
  • 40. P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715. MR 88j:35026
  • 41. G. Staffilani, On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J. 86 (1997), 109-142. MR 98b:35192
  • 42. G. Staffilani, Quadratic forms for a 2D Schrödinger equation, Duke Math. J. 86 (1997), 79-107. MR 98b:35191
  • 43. E. Stein, Harmonic Analysis, Princeton Mathematical Series 43 (1993). MR 95c:42002
  • 44. W. Strauss, Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, 73 (1989). MR 91g:35002
  • 45. C. Sulem, P.-L. Sulem, The nonlinear Schrödinger equation, Applied Math Scien. 139, Springer, (1999). MR 2000f:35139
  • 46. Y. Tsutsumi, $L\sp 2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30, no. 1, (1987), 115-125. MR 89c:35143
  • 47. L. Vega, Doctoral Thesis, Universidad Autonima de Madrid, Spain (1987).
  • 48. L. Vega, The Schrödinger equation: pointwise convergence to the initial data, Proc. AMS. 102 (1988), 874-878. MR 89d:35046
  • 49. T. Wolff, A Kakeya-type problem for circles, Amer. J. Math. 119 (1997), no. 5, 985-1026. MR 98m:42027
  • 50. T. Wolff, Recent work connected with the Kakeya problem, Prospects in mathematics (Princeton, NJ, 1996), 129-162, Amer. Math. Soc., Providence, RI, 1999. MR 2000d:42010
  • 51. V.E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1997), 908-914.
  • 52. V.E. Zakharov, V.S. L'vov, G. Falkovich, Kolmogorov spectra of turbulence, Springer series in nonlinear dynamics, Berlin ; New York : Springer-Verlag, (1992).

Review Information:

Reviewer: Gigliola Staffilani
Affiliation: Massachusetts Institute of Technology
Email: gigliola@math.mit.edu
Journal: Bull. Amer. Math. Soc. 40 (2003), 99-107
MSC (2000): Primary 35Q55
Published electronically: October 16, 2002
Review copyright: © Copyright 2002 American Mathematical Society
American Mathematical Society