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COMPLEX ADAPTIVE SYSTEMS:
EXPLORING THE KNOWN, THE UNKNOWN

AND THE UNKNOWABLE

SIMON A. LEVIN

Abstract. The study of complex adaptive systems, from cells to societies, is
a study of the interplay among processes operating at diverse scales of space,
time and organizational complexity. The key to such a study is an under-
standing of the interrelationships between microscopic processes and macro-
scopic patterns, and the evolutionary forces that shape systems. In particular,
for ecosystems and socioeconomic systems, much interest is focused on broad
scale features such as diversity and resiliency, while evolution operates most
powerfully at the level of individual agents. Understanding the evolution and
development of complex adaptive systems thus involves understanding how
cooperation, coalitions and networks of interaction emerge from individual be-
haviors and feed back to influence those behaviors. In this paper, some of the
mathematical challenges are discussed.

1. Introduction

The notion of complex adaptive systems has found expression in everything from
cells to societies, in general with reference to the self-organization of complex enti-
ties, across scales of space, time and organizational complexity. Much of our under-
standing of complex adaptive systems comes from observations of Nature, or from
simulations, and a daunting challenge is to summarize these observations mathe-
matically. In essence, we need a statistical mechanics of heterogeneous populations,
in which new types are continuously appearing through a variety of mechanisms,
mostly unpredictable in their details.

Complexity comes in a variety of forms, and not all complex, self-organizing
systems are adaptive systems in the sense that I will use the term in this paper.
Soap bubbles, or the frost-heaving patterns in tundra soils, may arise from self-
organization without benefit of any selection or design. Indeed, local variational
principles may capture the essential features of such pattern formation mathemat-
ically, for example through the minimal surfaces equation, implying some sort of
constrained optimization. However, the process by which this optimization takes
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place is quite different from what happens in biological evolution, in which multiple
reproductive lines compete based on realized fitnesses.

Even for systems for which such evolution applies, it is crucial to distinguish the
level or levels at which selection takes place. The process of animal development,
for example, is one in which macroscopic patterns emerge from largely microscopic
interactions as an essentially homogeneous egg becomes differentiated through a
self-organizing process guided by local interactions. Natural selection has shaped
the local rules of interaction, in accordance with the consequences that different
local rules imply for the fitness of the organism as a whole. In contrast, the devel-
opment of large animal aggregations, ecosystems, economies and societies represent
self-organizing processes also shaped by selection, but where the relevant fitness
differences are at more local scales, and the emergent patterns are to some extent
epiphenomena. In economics, a powerful example is Adam Smith’s notion of “the
invisible hand,” which he argued would serve to assure that “a beneficent social
order emerged as the unintended consequences of individual human actions” [57].
Closely related is the notion that efficient (Pareto optimal) utilization of resources
will emerge from individual rational economic behavior.

In general, it is not possible to separate complex adaptive systems into neat
categories based on whether and where selection is operating. In most systems,
selection is manifest on multiple interacting scales. In biological evolution, much
theory and research deals for example with intragenomic conflicts, or with the inter-
play between individual and group selection, or with selection processes that might
operate at the level of coevolution between species. In particular, understanding
the evolution of altruism and cooperation has been one of the most fascinating and
informative challenges in evolutionary theory since Darwin first puzzled about such
things. Identical issues arise in the analysis of social and economic systems, and
indeed have led to increasing cross-fertilization between evolutionary biology and
social science. In economic systems, the self-organizing aspects as reflected in the
notion of emergent Pareto optimality must be complemented by the top-down feed-
backs that come from central agencies, such as the Federal Reserve in the United
States, which modify local rules of interaction in order to direct the system towards
desired macroscopic outcomes.

In general, I will define complex adaptive systems by three properties [33]:

(1) diversity and individuality of components,
(2) localized interactions among those components, and
(3) an autonomous process that uses the outcomes of those interactions to

select a subset of those components for replication or enhancement.

This is a fairly general and flexible definition, which allows the notion of “local” to
be modified as the situation demands. In most cases, the notion of localization of
interactions will involve a range of scales.

The prototypical model of a complex adaptive system is the evolving biosphere;
hence, this will form the core of my discussion for the rest of this paper. However,
all of the essential principles carry over to other complex adaptive systems, and I
will point out appropriate parallels along the way.
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2. Mathematical ecology and evolutionary biology:

A synthetic view with implications for the study

of complex adaptive systems more generally

Most mathematicians are aware of the contributions of the great mathematician
Vito Volterra to the study of biological populations, and probably of the equations
that carry his name and that of the polymath demographer, Alfred Lotka. Volterra,
of course, was known first and foremost for his work on integral equations, but was
drawn by his son-in-law, the distinguished fisheries biologist Umberto D’Ancona,
to consider the mechanisms underlying the observed fluctuations in the Adriatic
fisheries. By constructing a set of two ordinary differential equations representing
the dynamics of predator and prey, Volterra demonstrated that such systems would
have a natural tendency to oscillate. A century of mathematical ecology has built
on the Lotka-Volterra equations (Lotka developed similar equations independently)
for interacting species to develop not only deep insights into biological dynamics,
but also an overbuilt edifice of mathematical complexity. For Volterra, and for this
entire tradition, the populations were homogeneous in their composition, made up
of identical individuals whose characteristics did not change over time. Evolution
was considered to be operating over time scales too long to be relevant to the
problems being addressed.

Evolutionary theory, of course, had had a pretty good beginning by the time of
Volterra. Darwin’s seminal voyage on the Beagle took place from 1831-1836, and
his masterpiece, On the Origin of Species, was published in 1859, the year before
Volterra was born; Volterra’s main work in mathematical ecology was more than a
half-century later. Volterra’s work in ecology thus was taking form simultaneously
with the mathematical development of evolutionary theory, as pioneered by Sir
Ronald Fisher, Sewall Wright and J.B.S. Haldane. Yet the separation between
the two was maintained on both sides. For Volterra, evolution was too slow to
be important; for the theorists of evolutionary change, interspecific dynamics were
also seen to be on a different scale and were largely ignored.

Today, we know that the scales of change are not so easily separable, espe-
cially when one is considering the interactions among species with very different
generation times. We need look no further than the rapid evolution of antibiotic re-
sistance in bacteria, or the continual emergence of new viral strains, to realize that
evolutionary and ecological phenomena can affect one another on comparable time
scales. Furthermore, and more subtly, even when we are simply trying to under-
stand purely ecological phenomena, it is valuable to embed them within a broader
evolutionary framework so that we can understand how current adaptations arose,
and in what sense they are the best that Nature could do.

More generally, the exploration of any complex adaptive systems involves the
interplay between two processes—the emergence of pattern in a system of fixed
entities, and the continual appearance of new kinds of entities. The first involves the
winnowing of variation—the loss of dimensionality and complexity, and the increase
of entropy, characteristic of the dynamics of most self-organizing systems. Robust
patterns, representing asymptotic outcomes of dynamical systems, typically can be
reached from multiplicities of starting conditions. The study of pattern formation
in diffusion-reaction and other systems has been a rich area of investigation across
the sciences. This, however, is only half of the story. The winnowing of variation
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must be balanced against the appearance of new variation; else the systems will
run down.

Evolutionary theory teaches that adaptive change due to natural selection de-
pends upon two factors: the selective differential among distinct types, and the de-
gree of variation among those types in the population. Absent either, there can be
no selective change. The standard mathematical formalism describes the dynamics
of selection given a distribution of types, but is agnostic concerning the genera-
tion of new variation. That is left to complementary theories of mutation and
recombination, and to the consideration of mutation-selection balance and other
frameworks that consider both processes simultaneously. Still, the fundamental
problem remains that, though one may be able to estimate the rate of innovation,
say through mutation, the exact nature of those innovations cannot be predicted.
Thus the dynamics of the full system take place in a high-dimensional space whose
axes are unknown.

I will treat these problems in turn—first the problem of pattern formation, and
then the evolutionary dynamics of systems subject to innovation. In the latter,
especially, there is a plethora of unsolved problems.

3. Pattern formation

The challenge of explaining pattern formation has attracted the attention of
researchers in every branch of science because of its centrality. In general, it deals
with the dynamics of collectives and with understanding how patterns manifest at
the level of those collectives are mediated at the level of the individual entities. In
continuum descriptions, individuals disappear and are replaced by local densities,
but the essential issues remain the same.

One common framework for investigating many problems in pattern formation
involves the use of systems of diffusion and reaction, in which populations of chem-
icals or individuals interact locally and are redistributed via random movement
(perhaps modified to represent various forms of taxis). Alan Turing, the great
mathematician and computer scientist, applied such a framework to understand
the fundamental problem in developmental biology—how, without a blueprint, the
undifferentiated egg develops into a highly differentiated organism. Turing [56]
hypothesized the existence of two chemicals—one an activator and the other an
inhibitor—which interact locally and are redistributed via diffusion. The activator
stimulates the production not only of the other type, but also of itself, whereas the
inhibitor inhibits the production of both. The relevant system of equations then
becomes

∂u

∂t
= f(u, v) +Du∇2u,

∂v

∂t
= g(u, v) +Dv∇2v,

(3.1)

in which u represents the concentration of the activator, and v represents the con-
centration of the inhibitor. The two diffusion rates, Du and Dv, are allowed to
differ, due to the inherent mobilities of the two molecules.

Turing assumed that, in the absence of diffusion, the underlying system of ordi-
nary differential equations (odes) embedded in (3.1) has an asymptotically stable
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equilibrium, (u, v). The linearization (Jacobian) matrix takes the form

(3.2) J =
[
a b
c d

]
,

in which a, b, c, and d represent the partial derivatives of f and g with respect to u
and v, at the equilibrium. Asymptotic stability means (ignoring the marginal case)
that the eigenvalues of the linearization matrix all have negative real part.

For the full system of partial differential equations (pdes), the ode equilibrium
becomes translated into a uniform equilibrium valid throughout space. According
to standard theory, asymptotic stability is examined with reference to perturbations
of the form

(3.3) w = exp(σt)W,

in which w is the displacement vector (u− u, v − v), σ is the wave number and W
is a time-independent solution of the spatial eigenvalue problem

(3.4) ∇2W + σ2W = 0,

subject to the relevant boundary conditions for (3.1) [41].
The corresponding linearization matrix then becomes

(3.5) J∗ =
[
a−Duσ

2 b
c d−Dvσ

2

]
.

For appropriate values of a, b, c and d, consistent with stability of the ode system,
the pde equilibrium becomes unstable when the ratio Dv/Du of diffusivities exceeds
a threshold amount, greater than unity. That instability is manifest through the
growth of a range of perturbations of the form given in (3.3), with maximal growth
exhibited for some intermediate “most dangerous mode” (see Figure 1). This is
linear stability theory, but it may be shown [52] that the destabilized uniform
pattern is replaced asymptotically by a stable non-uniform solution (a “dissipative
structure”).

Turing’s interpretation of the significance of this was that, given the existence of
two such morphogens, random initial perturbations would invariably translate the
initially undifferentiated (homogeneous) distribution into a stable prepattern, reli-
ably reached independent of the nature of the perturbations, which could underlie
morphological differentiation through catalytic processes. It was a startling and
penetrating insight, and continues to be the preferred model today for many forms
of pattern formation. In other situations, where the morphogens cannot be found,
or are known not to exist, other mechanisms for endogenous pattern formation
have displaced these so-called “diffusive instabilities”. Still, the fundamental ideas
remain much the same, with pattern emerging from local breaking of symmetry
and long-range stabilization of the new patterns [38].

The success of Turing’s insight led to a search for such phenomena in other sys-
tems. For example, in consideration of the puzzle of spatial patchiness at virtually
all scales in the distribution of oceanic plankton, Levin and Segel [37] and Okubo
[48] independently proposed that this patchiness could be understood by blending
the insights of Volterra and Turing. In particular, they identified the phytoplank-
ton (small plants) in the upper layers of the oceans with the activator in Turing’s
scheme, and the zooplankton (small animals) with the inhibitor. As expected, a
spatial pattern emerged, demonstrating patchiness in the distribution of both types



8 SIMON A. LEVIN

Figure 1. Diffusive instabilities: Instability emerges when in-
hibitor diffusion is high relative to activator diffusion.

of organisms. Because the Turing mechanism relies on high inhibitor diffusion, how-
ever, the demonstrated patterns exhibited much more fine-scale patchiness on the
part of the phytoplankton than of the zooplankton, in contradiction of observations
[22], [34], [60]. In fact, large-scale patchiness in planktonic systems is concordant
with patterns exhibited by passive tracers, like temperature or salinity, and hence
can probably be adequately explained by reference to the fluid dynamics of the
oceans. Small-scale patchiness, on the other hand, primarily of zooplankton, most
likely owes its existence to the fact that the animals are active swimmers and pref-
erentially move towards conspecifics, at least on certain scales.

To address this problem, Grünbaum [22], building on the work of others (e.g.
[51]), developed an individual-based model of animal aggregation. In essence, he
treated individual zooplankton as molecules, and wrote Newtonian laws (force =
mass times acceleration) for each. The forces came in a variety of forms, represent-
ing the influence of fluid dynamics, the tendency for individuals to follow chemical
or resource gradients to find food, and the tendency of individuals to be attracted
or repelled by other individuals or their motions. From this Lagrangian description,
he derived a statistical mechanics of the ensemble of individuals, and then converted
that into an Eulerian description by assuming that local densities followed a Poisson
distribution. In this way, the densities in the Eulerian integro-partial-differential
equation could be translated into probabilities of observing discrete numbers of
other individuals.

Similar work by other investigators built on this theme, and the state of the art
is summarized in Flierl et al. [19]. The starting point is the second-order system

δxi = viδt+ δXi,

δvi = aiδt+ δVi,
(3.6)
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in which xi is the position of an individual at time t, and vi is its velocity. The
capitalized terms in each equation encapsulate the assumptions made about changes
in position (hopping) or changes in velocity (acceleration), and how they depend
on extrinsic factors such as the distribution of other individuals. The objective is
to proceed from (3.6) to a continuum equation

(3.7)
∂

∂t
ρ = −∇ · J

in which ρ is the local density of organisms (e.g., zooplankton), and J is the total
flux, whose form depends on the assumptions being made.

To proceed from the individual-based models to the continuum description, one
writes an equation for the spatial/velocity density n (x,v, t). Specifically,

n(x,v,t+ δt)

=
∫

dx′dv′PδX(x− x′ − v′δt; x′,v′, t)PδV(v − v′ − aδt; x′,v′, t)n(x′,v′, t),

(3.8)

where for example PδV(z; x′,v′,t) is the probability that a particle at position x′

with velocity v′ at time t has a random acceleration δV = z. The assumption is
made that hops and accelerations are uncorrelated. Equation (3.8) is quite compli-
cated, but can be simplified by use of the Fokker-Planck approach [7] of expansion in
Taylor series and truncation, provided the probability distributions are sufficiently
sharply peaked. A continuum equation can then be obtained. In the absence of
random hops, for example, one obtains the Boltzmann equation in differential form,

∂

∂t
n(x,v,t) =− ∂

∂xi
[vin(x,v,t)]

− ∂

∂vi
[ain(x,v,t)]

+
1
2

∂2

∂vi∂vj
[γijn(x,v,t)]

(3.9)

summed over v and j.
The terms γij in this equation still need to be defined; they represent the second

moments of δV averaged over the time step δt, and hence reflect the assumptions
made about how accelerations respond to the distribution of individuals. Equation
(3.9) still represents the spatial/velocity density, and must be integrated to yield
the desired density equation. The systems must then be closed, for example by
the method of moments or by the Chapman-Enskog method [19]. In this way, an
appropriate statistical mechanics for animal aggregations can be developed. The
methods discussed were for a single population, but could in principle be extended
to multiple interacting types. Furthermore, the continuum formulation allows the
characterization of groups and the examination of the interplay between group
properties and individual properties.

The individual-based approach described above assumes no fixed grid, but al-
lows individuals to roam freely over a continuum. A parallel literature, based on
spatial stochastic processes in gridded domains [12], has developed from a variety
of perspectives. These include highly successful forest growth simulators, such as
SORTIE [49], [50], as well as a diversity of efforts to understand the evolution of
cooperation [13], [46] and spite [14]. In Durrett and Levin [13] the initial focus is
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Figure 2. Simulation of an interacting particle system model of
competition between selfish individuals (light pattern) and coop-
erators (dark pattern).

the spatial grid cell rather than the individual, but the rules of interaction still are
derived from assumptions about what individuals do (see Figure 2). Within each
cell there are a discrete number of individuals of each of several types, which inter-
act with one another according to fixed rules. Again, one can derive appropriate
hydrodynamic (continuum) limits by assuming that local densities follow a Pois-
son distribution [13]. Other approaches to developing reduced-form descriptions in
these systems have succeeded by using moment closure methods [4], [36], [50].

The take-home lesson from all of these studies is that it is indeed possible to
develop continuum descriptions of relevant phenomena, but that unless one starts
at the level of the individual and derives limits formally, the appropriate equations
cannot in general be divined. The failure of the Turing equations to capture the
behavior of plankton systems is that the relevant diffusion-reaction equations are
not those that would emerge from a naive extension of the mean-field equations by
appending diffusion terms, because individuals do not move randomly. Similarly,
in the work of Durrett and Levin [13], naive extension of mean-field dynamics to
a spatial regime fails to explain how cooperative behavior can emerge from local
interactions, in this case because of the infinite speed of propagation implicit in the
diffusion term. The correct limiting equations still describe diffusive movement,
but the interaction terms assume a non-intuitive form, very different from that
described by the odes. The appropriate form minimizes the consequences of having
small but non-zero densities of non-cooperators.

Similar problems exist in the study of socio-economic systems, and steps towards
a statistical mechanics of societies have been taken [11]. In particular, there is fun-
damental interest in the evolution of social norms [53], [5], [15], or of language [47],
and how such group properties emerge from and feed back to influence individual
behavior. However, whereas much progress has been made in the analysis of animal
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aggregations, and in particular in sorting out the relative importance of endogenous
and exogenous factors, the problems in analyzing human social systems are intrin-
sically more complex than those of oceanic krill and copepods. Still, the potential
payoffs are enormous, and the mathematical challenges irresistibly seductive.

4. Evolutionary dynamics

As discussed earlier, the examination of mechanisms of pattern formation, which
has been so successful throughout science, is only half of the problem in the analysis
of complex adaptive systems. The methods of statistical mechanics described in the
last section assume that the identities of the players are known. What happens if
the composition of the assemblage is constantly being changed by the emergence of
new types, previously undescribed? For example, a large literature exists about epi-
demiological dynamics in general, and about the interactions among cocirculating
strains of influenza A [1] in particular. Yet such analyses fall short of providing ade-
quate guidance in the design of new vaccines, which must anticipate the emergence
of new strains and even new sub-types with novel antigenic properties. Difficult
as this may be, remarkable success has been made in addressing this problem [18]
by using detailed molecular information to predict what strains will next become
widespread. In other situations, even when such prediction is impossible, certain
macroscopic statistical properties (such as the rate of appearance of new mutations)
may be knowable, allowing some predictive theory to be developed.

Evolutionary theory regularly has to deal with problems of this sort and to embed
what is observed in some unknowable higher-dimensional space of what is feasible
[26]. The simplest level of evolutionary analysis is content with understanding how
things work, and indeed simply in demonstrating that they do work. Thus, one
can examine how eyes work, how birds fly or fish swim, or how lizards control
heat loss by adjusting their posture in relation to the sun. This kind of analysis,
sometimes called satisficing, is not technically evolutionary since it looks neither at
alternatives nor at history.

The next level of evolutionary analysis views adaptations through the perspective
of optimization theory. Thus, one can assign a fitness to each possible phenotype
and ask how natural selection will mold the genome in response to this imposed
“fitness surface”. Classical theory [32] holds that, under strongly simplifying as-
sumptions, the mean fitness of a population will increase under natural selection,
tending towards a local peak. There are many problems with this result, however,
including especially the fact that it assumes that fitnesses are constant. Among
other things, it is still possible for the fitness landscape to have multiple local
peaks; indeed [28], the number of local optima in real situations may be enormous.
From a biological point of view, there is nothing wrong with this; evolution is a
historically constrained process, shaped in large parts by frozen accidents of times
past. This makes retrospective analysis feasible, but prediction impossible, except
in the most general terms [25], [33].

To explore the importance and consequences of multiple peaks in the fitness
surface, Kauffman and Levin [28] explored how natural selection might have solved
the traveling salesman problem. The method, it turned out, was not so different
from the combinatorial optimization methods that are commonly used [40]. The
traveling salesman problem seeks to find the shortest path connecting a given set
of points in the plane. In their approach, Kauffman and Levin [28] represented
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a particular path as a haploid genotype, and allowed modifications to the path
by various forms of mutation (for example, by interchanging any two cities on
a path). In each generation, a given number of mutants were generated, with
the mutation rate determining the genetic distances between the mutants and the
original genotypes. In the simplest version of the analysis, the most fit mutant was
selected if it was an improvement over the existing type. Kauffman and Levin found
that the process converged to an equilibrium, but indeed that there were multiple
possible equilibria. Furthermore, the rate of improvement depended crucially on
the mutation rate. Mutation rates too low kept the system trapped on local peaks,
while mutation rates too high led to the loss of local information about the fitness
gradient. Thus, optimal improvement occurred for intermediate rates of mutation.

For Kauffman [27] the lessons learned from this example suggested broad prin-
ciples, namely that systems function best when they are at the “edge of chaos”,
poised between too much rigidity in the face of change and too much change in the
face of achieved progress. The term “chaos” here is, of course, not employed in the
technical mathematical sense, but the term stuck, especially since the word “chaos”
does have meanings outside mathematics. Kauffman’s is an intriguing notion, and
one can imagine natural selection shaping our tendency to take risks in accordance
with the rate that new threats and opportunities present themselves over evolu-
tionary time. But what of complex adaptive systems, in which the relevant level of
selection is well below that of the whole system? Kauffman [27] argues that such
systems also will seek out the “edge of chaos”. Is there any reason to expect that?

The most intriguing metaphor for Kauffman is Per Bak’s notion of self-organized
criticality, illustrated best perhaps by Bak’s toy model of sandpile development [2].
Bak argues, in essence, that self-organizing systems will show increasing degrees of
connectivity until the correlations are pervasive enough that random perturbations
will cause cascading patterns of collapse, satisfying a power law in terms of the sta-
tistical distribution of disturbances. In his examination of a variety of phenomena
(such as mass extinctions, or stock market fluctuations), he claims support for this
theory in a variety of power laws, as would be predicted from the general theory.
Intriguing as this notion is (and I believe there is some truth in it), there are a
number of problems. First of all, power laws can arise from a variety of mecha-
nisms; so, whereas their existence is consistent with the notion of self-organized
criticality, it hardly is proof of it. As concerns the evidence for mass extinctions in
the fossil record, we know well that most of these were not endogenous in origin,
and alternative models explain the data equally well or better [44].

Secondly, ecological systems are not sandpiles. They exhibit a high degree of
heterogeneity, as do all complex systems, and it is this heterogeneity that is the
stuff of evolution. The fitnesses of individual types are, furthermore, not constants,
but are contingent on the composition of the population; this is what is known
in the evolutionary literature as frequency dependence. Finally, through evolution
and local interaction, patterns of modularity develop that limit the spread of distur-
bances. It is these three features—heterogeneity (and its maintenance), frequency
dependence and modularity—that complicate the picture and that will occupy most
of my attention for the rest of this paper.

The importance of frequency dependence in considering evolutionary phenomena
has long been understood and has long stimulated efforts to apply the theory of
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games [39], [54]. The evolution of cooperation, in particular, cannot succeed with-
out some reciprocity, but the context-dependent valuation of adaptations applies
to everything from the peacock’s ostentatious plumage to the simplest devices for
seed dispersal [23]. Maynard Smith [55] initiated a revolution in evolutionary ecol-
ogy, however, with his modification of simple formal notions from game theory to
characterize evolutionary behaviors. In particular, he introduced the notion of an
evolutionarily stable strategy (ESS) as one that, once established in the population,
could not be invaded by a mutant type. In particular, if E(u, v) is the payoff to
strategy u when playing against strategy v, an ESS u is defined by the properties
that, for all alternative strategies v,

either E(u, u) > E(v, u)

or E(u, u) = E(v, u) and E(u, v) > E(v, v).
(4.1)

It is easy to confirm that, if individuals play other types at random, these are
exactly the conditions needed to guarantee that the average payoff to u cannot be
exceeded by the average payoff to any other type, provided that the proportion
of type u in the population is arbitrarily close to 1. (Indeed, as long as u is not
fixed in the population (i.e, at 100%), its average payoff must exceed any other
type, provided interactions are random.) u may represent a pure strategy, or it
may represent a mixed strategy, in which each of several pure strategies is played
with a given probability. In the latter case, the ESS probabilities of playing each
strategy correspond to a Nash equilibrium [42], [43], and the population equilibrium
could also contain the corresponding pure strategists in proportions according to
the same probabilities.

In concept, the notion of the ESS is powerful; in practice, it often can be dif-
ficult to define. Individual fitnesses are not defined by games played once during
a lifetime, but by repeated games carried out in an explicit spatial context and
distributed over the lifetime of an individual. Throughout that lifetime, the in-
dividual will be encountering a diversity of other individuals and strategies, and
under changing environmental conditions. The fitness may need to be measured
as an integral over time, for example, and the game theoretic problem becomes a
problem in the calculus of variations [24]. Furthermore, the notion of an ESS is
a local one in frequency space, so it is not unusual for systems to possess multi-
ple ESSs. Biologically, this is quite comforting, since many different strategies do
exist in Nature; mathematically, it enriches the problem, but makes solution more
difficult.

Other complications exist. The notion of an ESS describes a static situation. If
the payoff in an evolutionary game translates into fitness, the question still remains
as to whether an ESS is dynamically achievable. Furthermore, as in the case of
influenza, there may be constraints on what novel types may arise, but there is still
an infinity of possible mutations to contend with. We must therefore introduce a
dynamic, in a space permitting an infinity of possibilities, in order to address these
challenges.

Suppose that there is a continuum of possible strategies, and that the dynamics
of evolution assumes small mutations from existing strategies. Although there is a
continuum of possible strategies, populations are made up of discrete individuals;
thus, in reality, only a finite number of strategies will be represented at any one
time. Let the extant strategies be indexed by i or j, and let for example pi denote
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the fraction of the population composed of type i individuals (strategists). Then the
average payoff to a type i individual, under the assumption of random interactions,
is

(4.2) Wi =
∑

pjE(ui, uj)

and we define the relative fitness Φi of ui to be

(4.3) Φi =
Wi

W
,

where W is the average payoff in the population, namely

(4.4) W =
∑

pjWj .

This allows us to embed the dynamic in the standard replicator scheme in pop-
ulation genetics. In particular, if we track changes in discrete time and denote by
p′i the frequency of ui in the successor generation, then

(4.5) p′i = piΦi = pi
Wi

W
.

All of this could be extended naturally to a continuum of types by use of density
functions, but the discrete formulation is clearer for exposition.

In the dynamic setting, an ESS is a type that, once established in the population,
cannot be displaced by an invader. Let φ(v, u) denote the (relative) fitness of
strategy v in a population dominated by strategy u. Thus, according to (4.3),

(4.6) φ(v, u) =
E(v, u)
E(u, u)

.

We may now redefine the concept of an ESS in terms of φ. Note first that

(4.7) φ(u, u) = 1 for all u.

Furthermore, an ESS w is defined by the condition that

(4.8) φ(v, w) ≤ φ(w,w) for all v.

We broaden this a bit to introduce the notion of a local ESS as one for which
(4.8) holds for all v close to w. Thus, a local ESS w is one for which φ(v, w) is
maximized as a function of v at v = w.

Next, consider what would happen if

(4.9) E(w,w) > E(v, w)

for all other strategies v, or at least for all other nearby strategies in strategy space,
so that w is an ESS, but that, in addition,

(4.10) E(w, u) < E(u, u)

for all nearby strategies. The consequence of (4.10) would be that w, once estab-
lished, cannot be invaded, but that, in turn, it cannot invade any nearby strategies.
Dynamically, it is not clear from these facts alone whether the ESS w will sur-
vive or be eliminated from the population, or indeed how it might ever arise in a
population. This is not a pathological case, but one that can arise quite robustly
in realistic problems; see for example [8], [16], and [35]. To address this anomaly,
Eshel [16] introduced the notion of a continuously stable strategy (CSS) as one
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that would be achieved dynamically. The notion of an ESS requires that φ(v, u) be
maximized as a function of v at v = u = w, so that

(4.11)
∂2φ

∂2v
≤ 0

there. Continuous stability requires that, in addition,

(4.12)
∂2φ

∂2v
+

∂2φ

∂u∂v
≤ 0,

which means that types closer to a CSS can invade types farther away.
Alternatively, by differentiating (4.7) twice, one finds that

(4.13)
∂2φ

∂2u
+

2∂2φ

∂u∂v
+
∂2φ

∂2v
= 0,

so that (4.12) is equivalent to

(4.14)
∂2φ

∂2v
≤ ∂2φ

∂2u
.

Note that, in the anomalous example I introduced earlier by conditions (4.9) and
(4.10), it follows that φ(v, u) is maximized as a function of u at v = u = w. Hence
∂2φ/∂2u ≤ 0, so that (4.14) is automatically a more stringent condition than (4.11).
This need not always be the case, and realistic situations do indeed arise in which
(4.14) is satisfied, but not (4.11). In this case, it may be shown that the dynamic
will drive the system towards w, but that w is not an ESS and hence cannot be
sustained in the population. This has been termed an evolutionary branch point
[20].

These examples demonstrate both the complexity of outcomes that can arise
when the full adaptive dynamics of a community are considered, and also the
rapidly developing tool chest of methods that are available [20], [35]. We are,
to some extent, where population genetics was a half-century ago. From Mendel’s
initial experimental work, there developed a reasonably complete theory of single-
locus population genetics [10]. As understanding of the inter-locus interactions,
especially linkage and epistasis, grew, the single-locus theory became extended to
two-locus theory [10]. When many loci are involved, however, as is the case for the
predominance of traits of ecological importance, a fundamentally different approach
is needed, cognizant of the particulate basis of inheritance, but tailored to deal with
a virtual continuum of phenotypic outcomes. This quantitative theory [17] has led
to powerful new insights at the interface between genetics and ecology. Similarly, in
ecology, the literature as regards single species and pairs of interacting species has a
long and rich tradition. To deal with the evolution of whole communities, however,
and ultimately with the biosphere, we need a quantitative theory that is cognizant
of the roles of individuals and individual species, but is tailored to deal with a
virtual continuum of behaviors. The lessons and methods of quantitative genetics
promise to be a powerful aid in this quest to understand the adaptive dynamics of
whole communities.

What are the challenges? In ecological and socioeconomic systems alike, patterns
emerge at higher levels as a result of adaptive dynamics at lower levels of integra-
tion. The nature of these systems as highly nonlinear complex adaptive systems
means that prediction is limited, and that we must develop statistical mechani-
cal methods to extract the knowable from the unknown. Ecological systems show
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regularities in the distribution of key nutrients and trace elements, characteristic
abundance distributions for species, and patterns of nutrient cycling that are robust
over time and sustain life as we know it. Yet it is not enough to suggest, as some
extreme versions of GAIA theory do (see [30] and [33]), that biotic evolution has
shaped the evolution of the physico-chemical environment to exactly those condi-
tions that humans need for survival. One must examine the coevolution of life and
environment by means of a theory that begins from the levels at which evolution
operates—organisms and their genomes. Daisyworld theorists [31] recognize this
and have tried to demonstrate how biospheric properties may have evolved. But
those models are obviously cartoons at this point, caricatures designed to illus-
trate how system properties might evolve from individual-based selection. More
realistic models are needed, tailored to the dynamics of systems where data are
available to test hypotheses. For socioeconomic systems, similar efforts are needed
to demonstrate how macroscopic properties of resource utilization and population
distribution can be related to the behaviors of individual agents. Much research is
ongoing based on simulations, for example of market interactions, but an analytical
theory is lacking.

One of the fundamental problems in ecological theory today is developing an
understanding of what maintains biodiversity and of the consequences of the loss
of biodiversity for system functioning. Here, the parallels to similar problems in
population genetics are strong; indeed, as discussed earlier in this paper, the fun-
damental problems in the study of any complex system are understanding what
maintains diversity, and how the existence of diversity affects system dynamics.
Thus it is not surprising that the methods of population genetics can be trans-
ported from one realm to another and brought to bear upon these fundamental
issues. In particular, Norberg et al. [45] use a variant of (4.5) to describe the dy-
namics of a community of interacting species in the face of a changing environment.
In essence, the payoff matrices underlying (4.5) are not constant, and immigration
events continuously introduce new types. In an effort to extract the knowable from
the unknown, Norberg et al. [45] focus attention not on the details of which species
are present, but on macroscopic descriptors of system function, for example the
means and variance of performance measures as distributed over the population of
all species. This serves to reduce dimensionality, but raises the problem of closing
the system of descriptors. Borrowing heavily from the techniques of quantitative
genetics [3], they use moment closure methods to develop a description that tracks
simulated dynamics remarkably well.

The efforts so far serve mainly to demonstrate that progress is possible, and that
the problems are rich both mathematically and biologically. The competitive com-
munities considered by Norberg et al. [45] (see also [29] and [6]) are the simplest
ecological communities imaginable. How does cooperation arise and become sus-
tained? If ecological and socioeconomic communities really have unique topological
structures and patterns of modularity and connectivity [9], [58], [59], how do these
emerge from the local dynamics of self-organization? And ultimately, perhaps, how
do social norms arise in human societies and become sustained against external
influences? In particular, can this understanding help us to sustain patterns of
behavior that serve the common good, and to change antiquated frameworks that
are resistant to progress simply because they have become frozen accidents of a
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cultural evolutionary process? These are the issues that make the study of complex
adaptive systems so seductive.

5. The known, the unknown and the unknowable

The study of complex adaptive systems is the study of systems limited in their
predictability. Because complex adaptive systems are systems in which microscopic
interactions and evolutionary processes give rise to macroscopic phenomena through
nonlinear interactions, these systems are subject to path dependence, with impli-
cations for the likelihood of multiple stable states, chaotic dynamics and frozen
accidents.

However, although it is impossible to predict every detail of system evolution,
broad features are knowable. In the metaphor of Ralph Gomory [21], the central
problem is to develop an appropriate statistical mechanics that allows one to sepa-
rate the knowable unknown from the truly unknowable. Such a mechanics will have
to deal with heterogeneous ensembles of interacting agents and with the continual
refreshment of that ensemble by novel and unpredictable types. The challenges are
immense, but sufficient progress already is being made to suggest that the payoffs
will be great.
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