Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

Making light of mathematics


Author: Michael Berry
Journal: Bull. Amer. Math. Soc. 40 (2003), 229-237
MSC (2000): Primary 28A80, 41A60, 78A45, 78A97
Published electronically: February 19, 2003
MathSciNet review: 1962297
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Summary of AMS Gibbs Lecture, delivered at San Diego, CA, 6 January 2002.


References [Enhancements On Off] (What's this?)

  • 1. G. B. Airy, On the intensity of light in the neighbourhood of a caustic, Trans. Camb. Phil. Soc. 6 (1838), 379-403.
  • 2. V. I. Arnol′d, Catastrophe theory, 2nd ed., Springer-Verlag, Berlin, 1986. Translated from the Russian by G. S. Wassermann; Based on a translation by R. K. Thomas. MR 845781 (87k:58038)
  • 3. V. I. Arnol′d, Critical points of smooth functions, and their normal forms, Uspehi Mat. Nauk 30 (1975), no. 5(185), 3–65 (Russian). MR 0420689 (54 #8701)
  • 4. V. I. Arnol′d, Normal forms of functions near degenerate critical points, the Weyl groups 𝐴_{𝑘},𝐷_{𝑘},𝐸_{𝑘} and Lagrangian singularities, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 3–25 (Russian). MR 0356124 (50 #8595)
  • 5. V. I. Arnol′d, Normal forms of functions in the neighborhood of degenerate critical points, Uspehi Mat. Nauk 29 (1974), no. 2(176), 11–49 (Russian). Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ\ (1901–1973), I. MR 0516034 (58 #24324)
  • 6. I. S. Averbukh and N. F. Perelman, Fractional quantum revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics, Phys. Lett. A. 139 (1989), 443-453.
  • 7. J. Barrow, The Book of Nothing, Jonathan Cape, London, 2000.
  • 8. M. V. Berry, Exuberant interference: Rainbows, tides, edges, (de)coherence, Phil. Trans. Roy. Soc. Lond. A 360 (2002), 1023-1037.
  • 9. M. V. Berry, Focusing and twinkling: critical exponents from catastrophes in non-Gaussian random short waves, J. Phys. A 10 (1977), no. 12, 2061–2081. MR 0489389 (58 #8817)
  • 10. M. V. Berry, Fractal modes of unstable lasers with polygonal and circular mirrors, Optics Commun. 200 (2001), 321-330.
  • 11. Michael Berry, Knotted zeros in the quantum states of hydrogen, Found. Phys. 31 (2001), no. 4, 659–667. Invited papers dedicated to Martin C. Gutzwiller, Part V. MR 1853611 (2002f:81010), http://dx.doi.org/10.1023/A:1017521126923
  • 12. M. V. Berry, Mode degeneracies and the Petermann excess-noise factor for unstable lasers, J. Mod. Opt. (2003), in press.
  • 13. M. V. Berry, Much ado about nothing: Optical dislocation lines (phase singularities, zeros, vortices...), M. S. Soskin, ed., Singular Optics, Proceedings of SPIE, 3487, 1998, pp. 1-5.
  • 14. M. V. Berry, Natural focusing, R. Gregory, J. Harris, P. Heard and D. Rose, eds., The Artful Eye, Oxford University Press, 1995, pp. 311-323.
  • 15. M. V. Berry, Pancharatnam, virtuoso of the Poincaré sphere: An appreciation, Current Science 67 (1994), 220-223.
  • 16. M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London Ser. A 392 (1984), no. 1802, 45–57. MR 738926 (85i:81022)
  • 17. M. V. Berry, Quantum fractals in boxes, J. Phys. A 29 (1996), no. 20, 6617–6629. MR 1421017 (98a:81045), http://dx.doi.org/10.1088/0305-4470/29/20/016
  • 18. M. V. Berry, Singularities in waves and rays, R. Balian, M. Kléman and J.-P. Poirier, eds., Les Houches Lecture Series Session 35, North-Holland: Amsterdam, 1981, pp. 453-543.
  • 19. M. V. Berry, Stokes’ phenomenon; smoothing a Victorian discontinuity, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 211–221 (1989). MR 1001456 (90j:58019)
  • 20. M. V. Berry, Uniform asymptotic smoothing of Stokes’s discontinuities, Proc. Roy. Soc. London Ser. A 422 (1989), no. 1862, 7–21. MR 990851 (90h:34084)
  • 21. M. V. Berry, Why are special functions special?, Physics Today (April 2001), 11-12.
  • 22. M. V. Berry, R. Bhandari and S. Klein, Black plastic sandwiches demonstrating biaxial optical anisotropy, Eur. J. Phys. (1999), 1-14.
  • 23. M. V. Berry and M. R. Dennis, Knotted and linked phase singularities in monochromatic waves, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2013, 2251–2263. MR 1857930 (2002k:35058), http://dx.doi.org/10.1098/rspa.2001.0826
  • 24. M. V. Berry and M. R. Dennis, Knotting and unknotting of phase singularities: Helmholtz waves, paraxial waves and waves in 2+1 spacetime, J. Phys. A 34 (2001), no. 42, 8877–8888. MR 1876115 (2002i:35156), http://dx.doi.org/10.1088/0305-4470/34/42/311
  • 25. M. V. Berry and M. R. Dennis, Phase singularities in isotropic random waves, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000), no. 2001, 2059–2079. MR 1794716 (2001h:78015), http://dx.doi.org/10.1098/rspa.2000.0602
  • 26. M. V. Berry and J. Goldberg, Renormalisation of curlicues, Nonlinearity 1 (1988), no. 1, 1–26. MR 928946 (89b:58105)
  • 27. M. V. Berry and S. Klein, Integer, fractional and fractal Talbot effects, J. Modern Opt. 43 (1996), no. 10, 2139–2164. MR 1410175 (97f:78026), http://dx.doi.org/10.1080/095003496154761
  • 28. M. V. Berry and Z. V. Lewis, On the Weierstrass-Mandelbrot fractal function, Proc. Roy. Soc. London Ser. A 370 (1980), no. 1743, 459–484. MR 570931 (81d:00005), http://dx.doi.org/10.1098/rspa.1980.0044
  • 29. M. V. Berry, I. Marzoli and W. P. Schleich, Quantum carpets, carpets of light, Physics World 14 (6) (2001), 39-44.
  • 30. M. V. Berry, J. F. Nye and F. J. Wright, The elliptic umbilic diffraction catastrophe, Phil. Trans. Roy. Soc. A291 (1979), 453-484.
  • 31. M. V. Berry and D. H. J. O’Dell, Diffraction by volume gratings with imaginary potentials, J. Phys. A 31 (1998), no. 8, 2093–2101. MR 1628673 (99d:78027), http://dx.doi.org/10.1088/0305-4470/31/8/019
  • 32. M. V. Berry, C. Storm and W. van Saarloos, Theory of unstable laser modes: Edge waves and fractality, Optics Commun. 197 (2001), 393-402.
  • 33. M. V. Berry and C. Upstill, Catastrophe optics: Morphologies of caustics and their diffraction patterns, Progress in Optics 18 (1980), 257-346.
  • 34. M. V. Berry and M. Wilkinson, Diabolical points in the spectra of triangles, Proc. Roy. Soc. London Ser. A 392 (1984), no. 1802, 15–43. MR 738925 (85e:81021)
  • 35. Max Born and Emil Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, Pergamon Press, New York-London-Paris-Los Angeles, 1959. MR 0108202 (21 #6918)
  • 36. D. Braun, F. Haake and W. Strunz, Universality of decoherence, Phys. Rev. Lett. 86 (2001), 2193-2197.
  • 37. J. Courtial and M. J. Padgett, Monitor-outside-a-monitor effect and self-similar fractal structure in the eigenmodes of unstable optical resonators, Phys. Rev. Lett. 85 (2000), 5320-5323.
  • 38. R. B. Dingle, Asymptotic expansions: their derivation and interpretation, 1973. MR 0499926 (58 #17673)
  • 39. DLMF, Digital Library of Mathematical Functions (2002), http://dlmf.nist.gov.
  • 40. J. Écalle, Cinq applications des fonctions résurgentes, 1984. Preprint 84T62 (Orsay).
  • 41. Jean Écalle, Les fonctions résurgentes. Tome I, Publications Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81], vol. 5, Université de Paris-Sud, Département de Mathématique, Orsay, 1981 (French). Les algèbres de fonctions résurgentes. [The algebras of resurgent functions]; With an English foreword. MR 670417 (84h:30077a)
    Jean Écalle, Les fonctions résurgentes. Tome II, Publications Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81], vol. 6, Université de Paris-Sud, Département de Mathématique, Orsay, 1981 (French). Les fonctions résurgentes appliquées à l’itération. [Resurgent functions applied to iteration]. MR 670418 (84h:30077b)
    Jean Écalle, Les fonctions résurgentes. Tome III, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985 (French). L’équation du pont et la classification analytique des objects locaux. [The bridge equation and analytic classification of local objects]. MR 852210 (87k:32009)
  • 42. J. W. Gibbs, On double refraction in perfectly transparent media which exhibit the phenomenon of circular polarization, Amer. J. Sci. (ser. 3) 23 (1882), 460-476.
  • 43. G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation, Acta. Math. 37 (1914), 192-239.
  • 44. G. Herzberg and H. C. Longuet-Higgins, Intersection of potential-energy surfaces in polyatomic molecules, Disc. Far. Soc. 35 (1963), 77-82.
  • 45. P. Horwitz, Asymptotic theory of unstable resonator modes, J. Opt. Soc. Amer. 63 (1973), 1528-1543.
  • 46. Robert Kaplan, The nothing that is, Oxford University Press, New York, 2000. A natural history of zero. MR 1768799 (2001i:01001)
  • 47. G. P. Karman, G. S. McDonald, G. H. C. New and J. P. Woerdman, Fractal modes in unstable resonators, Nature 402 (1999), 138.
  • 48. G. P. Karman, G. S. McDonald, J. P. Woerdman and G. H. C. New, Excess-noise dependence on intracavity aperture shape, Appl. Opt. 38 (1999), 6874-6878.
  • 49. G. P. Karman and J. P. Woerdman, Fractal structure of eigenmodes of unstable-cavity lasers, Opt. Lett. 23 (1998), 1909-1911.
  • 50. Nahum Kipnis, History of the principle of interference of light, Science Networks. Historical Studies, vol. 5, Birkhäuser Verlag, Basel, 1991. MR 1131080 (92g:01040)
  • 51. D. Lee, The J. W. Gibbs Fan Club Homepage (2001), http://www.stanford.edu/ dalee/gibbs.html
  • 52. R. Lee and A. Fraser, The Rainbow Bridge: Rainbows in Art, Myth and Science, Pennsylvania State University and SPIE press, Bellingham, WA, 2001.
  • 53. M. S. Longuet-Higgins, Reflection and refraction at a random moving surface. I. Pattern and paths of specular points, J. Opt. Soc. Amer. 50 (1960), 838–844. MR 0113489 (22 #4327)
  • 54. M. S. Longuet-Higgins, Reflection and refraction at a random moving surface. II. Number of specular points in a Gaussian surface, J. Opt. Soc. Amer. 50 (1960), 845–850. MR 0113490 (22 #4328)
  • 55. M. S. Longuet-Higgins, Reflection and refraction at a random moving surface. III. Frequency of twinkling in a Gaussian surface, J. Opt. Soc. Amer. 50 (1960), 851–856. MR 0113491 (22 #4329)
  • 56. G. S. McDonald, G. P. Karman, G. H. C. New and J. P. Woerdman, Kaleidoscope laser, J. Opt. Soc. Amer. B. 17 (2000), 524-529.
  • 57. G. S. McDonald, G. H. C. New and J. P. Woerdman, Excess-noise in low Fresnel number unstable resonators, Opt. Commun. 164 (1999), 285-295.
  • 58. G. H. C. New, The origin of excess noise, J. Modern Optics 42 (1995), 799-810.
  • 59. G. H. C. New, M. A. Yates, J. P. Woerdman and G. S. McDonald, Diffractive origin of fractal resonator modes, Optics Letters (2001), in press.
  • 60. J. F. Nye, Natural focusing and fine structure of light, Institute of Physics Publishing, Bristol, 1999. Caustics and wave dislocations. MR 1684422 (2000e:78001)
  • 61. J. F. Nye and M. V. Berry, Dislocations in wave trains, Proc. Roy. Soc. London Ser. A 336 (1974), 165–190. MR 0351263 (50 #3752)
  • 62. Roland Omnès, Consistent interpretations of quantum mechanics, Rev. Modern Phys. 64 (1992), no. 2, 339–382. MR 1157132 (93k:81009), http://dx.doi.org/10.1103/RevModPhys.64.339
  • 63. K. Patorski, The self-imaging phenomenon and its applications, Progress in Opt. 27 (1989), 1-108.
  • 64. T. Pearcey, The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic, Philos. Mag. (7) 37 (1946), 311–317. MR 0020857 (8,605d)
  • 65. Tim Poston and Ian Stewart, Catastrophe theory and its applications, Pitman, London-San Francisco, Calif.-Melbourne: distributed by Fearon-Pitman Publishers, Inc., Belmont, Calif., 1978. With an appendix by D. R. Olsen, S. R. Carter and A. Rockwood; Surveys and Reference Works in Mathematics, No. 2. MR 0501079 (58 #18535)
    Tim Poston and Ian Stewart, Catastrophe theory and its applications, Dover Publications, Inc., Mineola, NY, 1996. With an appendix by D. R. Olsen, S. R. Carter and A. Rockwood; Reprint of the 1978 original. MR 1426131 (97g:58019)
  • 66. K. Sabbagh, Dr. Riemann's Zeros, Atlantic Books, London, 2002.
  • 67. Alfred Shapere and Frank Wilczek (eds.), Geometric phases in physics, Advanced Series in Mathematical Physics, vol. 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. MR 1084385 (91h:81004)
  • 68. A. E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986.
  • 69. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos and N. R. Heckenberg, Topological charge and angular momentum of light beams carrying optical vortices, Phys. Rev. A 56 (1997), 4064-4075.
  • 70. M. S. Soskin and M. V. Vasnetsov, Singular optics, Progress in Optics 42 (2001), 219-276.
  • 71. M. S. E. Soskin, Singular Optics, Proceedings of SPIE, 3487, 1998.
  • 72. W. H. Southwell, Unstable-resonator-mode derivation using virtual-source theory, J. Opt. Soc. Amer. 3 (1986), 1885-1891.
  • 73. G. G. Stokes, On the discontinuity of arbitrary constants which appear in divergent developments, Trans. Camb. Phil. Soc. 10 (1864), 106-128.
  • 74. G. G. Stokes, On the numerical calculation of a class of definite integrals and infinite series, Trans. Camb. Phil. Soc. 9 (1847), 379-407.
  • 75. H. F. Talbot, Facts relating to optical science. No. IV, Phil. Mag. 9 (1836), 401-407.
  • 76. K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059–1078. MR 0464332 (57 #4264)
  • 77. A. N. Varchenko, Newton polyhedra and estimation of oscillating integrals, Funkt. Anal. i Prilozhen (Moscow) 10 (1976), 13-38.
  • 78. M. Vasnetsov and K. Staliunas, eds., Optical Vortices, Nova Science Publishers, Commack, NY, 1999.
  • 79. F. J. Wright and M. V. Berry, Wavefront dislocations in the sound-field of a pulsed circular piston radiator, J. Acoust. Soc. Amer. 75 (1984), 733-748.
  • 80. J. A. Yeazell and C. R. J. Stroud, Observation of fractional revivals in the evolution of a Rydberg atomic wave packet, Phys. Rev. A 43 (1991), 5153-5156.
  • 81. T. Young, The Bakerian Lecture. Experiments and calculations relative to physical optics, Phil. Trans. Roy. Soc. Lond. 94 (1804), 1-16.
  • 82. T. Young, The Bakerian Lecture: On the theory of light and colours, Phil. Trans. Roy. Soc. 92 (1802), 12-48.
  • 83. W. H. Zurek, Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time, Physica Scripta 76 (1998), 186-198.
  • 84. W. H. Zurek and J. P. Paz, Decoherence, chaos and the 2nd law, Phys. Rev. Lett. 72 (1994), 2508-2511.
  • 85. W. H. Zurek and J. P. Paz, Quantum chaos--a decoherent definition, Physica D 83 (1995), 300-308.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 28A80, 41A60, 78A45, 78A97

Retrieve articles in all journals with MSC (2000): 28A80, 41A60, 78A45, 78A97


Additional Information

Michael Berry
Affiliation: H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

DOI: http://dx.doi.org/10.1090/S0273-0979-03-00972-8
PII: S 0273-0979(03)00972-8
Received by editor(s): July 30, 2002
Published electronically: February 19, 2003
Article copyright: © Copyright 2003 American Mathematical Society