Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Making light of mathematics


Author: Michael Berry
Journal: Bull. Amer. Math. Soc. 40 (2003), 229-237
MSC (2000): Primary 28A80, 41A60, 78A45, 78A97
DOI: https://doi.org/10.1090/S0273-0979-03-00972-8
Published electronically: February 19, 2003
MathSciNet review: 1962297
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Summary of AMS Gibbs Lecture, delivered at San Diego, CA, 6 January 2002.


References [Enhancements On Off] (What's this?)

  • 1. G. B. Airy, On the intensity of light in the neighbourhood of a caustic, Trans. Camb. Phil. Soc. 6 (1838), 379-403.
  • 2. V. I. Arnold, Catastrophe Theory, Springer-Verlag, Berlin, 1986. MR 87k:58038
  • 3. V. I. Arnold, Critical points of smooth functions and their normal forms, Russ. Math. Surv. 30 (1975), 1-75. MR 54:8701
  • 4. V. I. Arnold, Normal forms for functions near degenerate critical points, the Weyl groups of $A_k, D_k, E_k$ and Lagrangian singularities, Functional. Anal. Appl. 6 (1973), 254-272. MR 50:8595
  • 5. V. I. Arnold, Normal forms of functions in neighbourhoods of degenerate critical points, Russ. Math. Surv. 29 (1974), 10-50. MR 58:24324
  • 6. I. S. Averbukh and N. F. Perelman, Fractional quantum revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics, Phys. Lett. A. 139 (1989), 443-453.
  • 7. J. Barrow, The Book of Nothing, Jonathan Cape, London, 2000.
  • 8. M. V. Berry, Exuberant interference: Rainbows, tides, edges, (de)coherence, Phil. Trans. Roy. Soc. Lond. A 360 (2002), 1023-1037.
  • 9. M. V. Berry, Focusing and twinkling: Critical exponents from catastrophes in non-Gaussian random short waves, J. Phys. A 10 (1977), 2061-2081. MR 58:8817
  • 10. M. V. Berry, Fractal modes of unstable lasers with polygonal and circular mirrors, Optics Commun. 200 (2001), 321-330.
  • 11. M. V. Berry, Knotted zeros in the quantum states of hydrogen, Found. Phys. 31 (2001), 659-667. MR 2002f:81010
  • 12. M. V. Berry, Mode degeneracies and the Petermann excess-noise factor for unstable lasers, J. Mod. Opt. (2003), in press.
  • 13. M. V. Berry, Much ado about nothing: Optical dislocation lines (phase singularities, zeros, vortices...), M. S. Soskin, ed., Singular Optics, Proceedings of SPIE, 3487, 1998, pp. 1-5.
  • 14. M. V. Berry, Natural focusing, R. Gregory, J. Harris, P. Heard and D. Rose, eds., The Artful Eye, Oxford University Press, 1995, pp. 311-323.
  • 15. M. V. Berry, Pancharatnam, virtuoso of the Poincaré sphere: An appreciation, Current Science 67 (1994), 220-223.
  • 16. M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A392 (1984), 45-57. MR 85i:81022
  • 17. M. V. Berry, Quantum fractals in boxes, J. Phys. A 26 (1996), 6617-6629. MR 98a:81045
  • 18. M. V. Berry, Singularities in waves and rays, R. Balian, M. Kléman and J.-P. Poirier, eds., Les Houches Lecture Series Session 35, North-Holland: Amsterdam, 1981, pp. 453-543.
  • 19. M. V. Berry, Stokes' phenomenon; smoothing a Victorian discontinuity, Publ. Math. of the Institut des Hautes Études Scientifique 68 (1989), 211-221. MR 90j:58019
  • 20. M. V. Berry, Uniform asymptotic smoothing of Stokes's discontinuities, Proc. Roy. Soc. Lond. A422 (1989), 7-21. MR 90h:34084
  • 21. M. V. Berry, Why are special functions special?, Physics Today (April 2001), 11-12.
  • 22. M. V. Berry, R. Bhandari and S. Klein, Black plastic sandwiches demonstrating biaxial optical anisotropy, Eur. J. Phys. (1999), 1-14.
  • 23. M. V. Berry and M. R. Dennis, Knotted and linked phase singularities in monochromatic waves, Proc. Roy. Soc. Lond. 457 (2001), 2251-2263. MR 2002k:35058
  • 24. M. V. Berry and M. R. Dennis, Knotting and unknotting of phase singularities in Helmholz waves, paraxial waves and waves in 2+1 spacetime, J. Phys. A 34 (2001). MR 2002i:35156
  • 25. M. V. Berry and M. R. Dennis, Phase singularities in isotropic random waves, Proc. Roy. Soc. Lond. A 456 (2000), 2059-2079. MR 2001h:78015
  • 26. M. V. Berry and J. Goldberg, Renormalization of curlicues, Nonlinearity 1 (1988), 1-26. MR 89b:58105
  • 27. M. V. Berry and S. Klein, Integer, fractional and fractal Talbot effects, J. Mod. Optics 43 (1996), 2139-2164. MR 97f:78026
  • 28. M. V. Berry and Z. V. Lewis, On the Weierstrass-Mandelbrot fractal function, Proc. Roy. Soc. A370 (1980), 459-484. MR 81d:00005
  • 29. M. V. Berry, I. Marzoli and W. P. Schleich, Quantum carpets, carpets of light, Physics World 14 (6) (2001), 39-44.
  • 30. M. V. Berry, J. F. Nye and F. J. Wright, The elliptic umbilic diffraction catastrophe, Phil. Trans. Roy. Soc. A291 (1979), 453-484.
  • 31. M. V. Berry and D. H. J. O'Dell, Diffraction by volume gratings with imaginary potentials, J. Phys. A. 31 (1998), 2093-2101. MR 99d:78027
  • 32. M. V. Berry, C. Storm and W. van Saarloos, Theory of unstable laser modes: Edge waves and fractality, Optics Commun. 197 (2001), 393-402.
  • 33. M. V. Berry and C. Upstill, Catastrophe optics: Morphologies of caustics and their diffraction patterns, Progress in Optics 18 (1980), 257-346.
  • 34. M. V. Berry and M. Wilkinson, Diabolical points in the spectra of triangles, Proc. Roy. Soc. Lond. A392 (1984), 15-43. MR 85e:81021
  • 35. M. Born and E. Wolf, Principles of Optics, Pergamon, London, 1959. MR 21:6918
  • 36. D. Braun, F. Haake and W. Strunz, Universality of decoherence, Phys. Rev. Lett. 86 (2001), 2193-2197.
  • 37. J. Courtial and M. J. Padgett, Monitor-outside-a-monitor effect and self-similar fractal structure in the eigenmodes of unstable optical resonators, Phys. Rev. Lett. 85 (2000), 5320-5323.
  • 38. R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, New York and London, 1973. MR 58:17673
  • 39. DLMF, Digital Library of Mathematical Functions (2002), http://dlmf.nist.gov.
  • 40. J. Écalle, Cinq applications des fonctions résurgentes, 1984. Preprint 84T62 (Orsay).
  • 41. J. Écalle, Les fonctions résurgentes (3 volumes), Publ. Math. d'Orsay 81 and 85, Univ. de Paris-Sud, Orsay, 1981, 1985. MR 84h:30077a, MR 84h:30077b, MR 87k:32009
  • 42. J. W. Gibbs, On double refraction in perfectly transparent media which exhibit the phenomenon of circular polarization, Amer. J. Sci. (ser. 3) 23 (1882), 460-476.
  • 43. G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation, Acta. Math. 37 (1914), 192-239.
  • 44. G. Herzberg and H. C. Longuet-Higgins, Intersection of potential-energy surfaces in polyatomic molecules, Disc. Far. Soc. 35 (1963), 77-82.
  • 45. P. Horwitz, Asymptotic theory of unstable resonator modes, J. Opt. Soc. Amer. 63 (1973), 1528-1543.
  • 46. R. Kaplan, The Nothing That Is: A Natural History of Zero, Oxford University Press, New York, 1999. MR 2001i:01001
  • 47. G. P. Karman, G. S. McDonald, G. H. C. New and J. P. Woerdman, Fractal modes in unstable resonators, Nature 402 (1999), 138.
  • 48. G. P. Karman, G. S. McDonald, J. P. Woerdman and G. H. C. New, Excess-noise dependence on intracavity aperture shape, Appl. Opt. 38 (1999), 6874-6878.
  • 49. G. P. Karman and J. P. Woerdman, Fractal structure of eigenmodes of unstable-cavity lasers, Opt. Lett. 23 (1998), 1909-1911.
  • 50. N. Kipnis, History of the Principle of Interference of Light, Birkhäuser Verlag, Basel, 1991. MR 92g:01040
  • 51. D. Lee, The J. W. Gibbs Fan Club Homepage (2001), http://www.stanford.edu/ dalee/gibbs.html
  • 52. R. Lee and A. Fraser, The Rainbow Bridge: Rainbows in Art, Myth and Science, Pennsylvania State University and SPIE press, Bellingham, WA, 2001.
  • 53. M. S. Longuet-Higgins, Reflection and refraction at a random moving surface. I. Pattern and paths of specular points, J. Opt. Soc. Amer. 50 (1960), 838-844. MR 22:4327
  • 54. M. S. Longuet-Higgins, Reflection and refraction at a random moving surface. II. Number of specular points in a Gaussian surface, J. Opt. Soc. Amer. 50 (1960), 845-850. MR 22:4328
  • 55. M. S. Longuet-Higgins, Reflection and refraction at a random moving surface. III. Frequency of twinkling in a Gaussian surface, J. Opt. Soc. Amer. 50 (1960), 851-856. MR 22:4329
  • 56. G. S. McDonald, G. P. Karman, G. H. C. New and J. P. Woerdman, Kaleidoscope laser, J. Opt. Soc. Amer. B. 17 (2000), 524-529.
  • 57. G. S. McDonald, G. H. C. New and J. P. Woerdman, Excess-noise in low Fresnel number unstable resonators, Opt. Commun. 164 (1999), 285-295.
  • 58. G. H. C. New, The origin of excess noise, J. Modern Optics 42 (1995), 799-810.
  • 59. G. H. C. New, M. A. Yates, J. P. Woerdman and G. S. McDonald, Diffractive origin of fractal resonator modes, Optics Letters (2001), in press.
  • 60. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations, Institute of Physics Publishing, Bristol, 1999. MR 2000e:78001
  • 61. J. F. Nye and M. V. Berry, Dislocations in wave trains, Proc. Roy. Soc. Lond. A336 (1974), 165-190. MR 50:3752
  • 62. R. Omnes, Consistent interpretations of quantum-mechanics, Rev. Mod. Phys. 64 (1992), 339-382. MR 93k:81009
  • 63. K. Patorski, The self-imaging phenomenon and its applications, Progress in Opt. 27 (1989), 1-108.
  • 64. T. Pearcey, The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic, Phil. Mag. 37 (1946), 311-317. MR 8:605d
  • 65. T. Poston and I. Stewart, Catastrophe Theory and Its Applications, Pitman (reprinted by Dover), London, 1978. MR 58:18535, MR 97g:58019
  • 66. K. Sabbagh, Dr. Riemann's Zeros, Atlantic Books, London, 2002.
  • 67. A. Shapere and F. Wilczek, eds., Geometric Phases in Physics, World Scientific, Singapore, 1989. MR 91h:81004
  • 68. A. E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986.
  • 69. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos and N. R. Heckenberg, Topological charge and angular momentum of light beams carrying optical vortices, Phys. Rev. A 56 (1997), 4064-4075.
  • 70. M. S. Soskin and M. V. Vasnetsov, Singular optics, Progress in Optics 42 (2001), 219-276.
  • 71. M. S. E. Soskin, Singular Optics, Proceedings of SPIE, 3487, 1998.
  • 72. W. H. Southwell, Unstable-resonator-mode derivation using virtual-source theory, J. Opt. Soc. Amer. 3 (1986), 1885-1891.
  • 73. G. G. Stokes, On the discontinuity of arbitrary constants which appear in divergent developments, Trans. Camb. Phil. Soc. 10 (1864), 106-128.
  • 74. G. G. Stokes, On the numerical calculation of a class of definite integrals and infinite series, Trans. Camb. Phil. Soc. 9 (1847), 379-407.
  • 75. H. F. Talbot, Facts relating to optical science. No. IV, Phil. Mag. 9 (1836), 401-407.
  • 76. K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), 1059-1078. MR 57:4264
  • 77. A. N. Varchenko, Newton polyhedra and estimation of oscillating integrals, Funkt. Anal. i Prilozhen (Moscow) 10 (1976), 13-38.
  • 78. M. Vasnetsov and K. Staliunas, eds., Optical Vortices, Nova Science Publishers, Commack, NY, 1999.
  • 79. F. J. Wright and M. V. Berry, Wavefront dislocations in the sound-field of a pulsed circular piston radiator, J. Acoust. Soc. Amer. 75 (1984), 733-748.
  • 80. J. A. Yeazell and C. R. J. Stroud, Observation of fractional revivals in the evolution of a Rydberg atomic wave packet, Phys. Rev. A 43 (1991), 5153-5156.
  • 81. T. Young, The Bakerian Lecture. Experiments and calculations relative to physical optics, Phil. Trans. Roy. Soc. Lond. 94 (1804), 1-16.
  • 82. T. Young, The Bakerian Lecture: On the theory of light and colours, Phil. Trans. Roy. Soc. 92 (1802), 12-48.
  • 83. W. H. Zurek, Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time, Physica Scripta 76 (1998), 186-198.
  • 84. W. H. Zurek and J. P. Paz, Decoherence, chaos and the 2nd law, Phys. Rev. Lett. 72 (1994), 2508-2511.
  • 85. W. H. Zurek and J. P. Paz, Quantum chaos--a decoherent definition, Physica D 83 (1995), 300-308.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 28A80, 41A60, 78A45, 78A97

Retrieve articles in all journals with MSC (2000): 28A80, 41A60, 78A45, 78A97


Additional Information

Michael Berry
Affiliation: H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

DOI: https://doi.org/10.1090/S0273-0979-03-00972-8
Received by editor(s): July 30, 2002
Published electronically: February 19, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society