Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture


Author: Persi Diaconis
Journal: Bull. Amer. Math. Soc. 40 (2003), 155-178
MSC (2000): Primary 00-02, 60B15
DOI: https://doi.org/10.1090/S0273-0979-03-00975-3
Published electronically: February 12, 2003
MathSciNet review: 1962294
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Typical large unitary matrices show remarkable patterns in their eigenvalue distribution. These same patterns appear in telephone encryption, the zeros of Riemann's zeta function, a variety of physics problems, and in the study of Toeplitz operators. This paper surveys these applications and what is currently known about the patterns.


References [Enhancements On Off] (What's this?)

  • 1. Adler, M.; Van Moerbeke, P., Integrals over Classical Groups, Random Permutations, Toda and Toeplitz Lattices. Comm. Pure Appl. Math. 2001, 54, 153-205.
  • 2. Adler, M.; Van Moerbeke, P., Recursion Relations for Unitary Integrals, Combinatorics and the Toeplitz Lattice. Technical Report, Dept. of Mathematics, Brandeis, 2002.
  • 3. Adler, M.; Shiota, T.; Van Moerbeke, P., Random Matrices, Virasoro Algebras, and Non-Commutative KP. Duke Math. J. 1998, 94, 379-431. MR 99e:58088
  • 4. Aldous, D.; Diaconis, P., Longest Increasing Subsequences: From Patience Sorting to the Baik-Deift-Johansson Theorem. Bull. Amer. Math. Soc. 1999, 36, 413-432. MR 2000g:60013
  • 5. Anderson, T., Asymptotic Theory for Principal Component Analysis. Ann. Math. Statist. 1963, 34, 122-148. MR 26:3149
  • 6. d'Aristotle, A., An Invariance Principle for Triangular Arrays. Jour. Theoret. Probab. 2000, 13, 327-342.
  • 7. d'Aristotle, A.; Diaconis, P; Newman, C., Brownian Motion and the Classical Groups. Technical Report, Stanford University, 2002.
  • 8. Bai, Z., Methodologies in Spectral Analysis of Large Dimensional Random Matrices: A Review. Statistica Sinica 1999, 9, 611-677. MR 2000e:60044
  • 9. Baik, J.; Deift, P.; Johansson, K., On the Distribution of the Length of the Longest Increasing Subsequence of Random Permutations. Jour. Amer. Math. Soc. 1999, 12, 1119-1178. MR 2000e:05006
  • 10. Basor, E., Distribution Functions for Random Variables for Ensembles of Positive Hermitian Matrices. Comm. Math. Phys. 1997, 188, 327-350. MR 99b:82046
  • 11. Basor, E., Connections Between Random Matrices and Szegö Limit Theorem. In Spectral Problems in Geometry and Arithmetic; Branson, T., Ed.; Amer. Math. Soc.: Providence, RI, 1999; 1-7. MR 2000e:47049
  • 12. Berry, M.; Keating, J., The Riemann Zeros and Eigenvalue Asymptotics. Siam Review 1999, 41, 236-266. MR 2000f:11107
  • 13. Biane, P., Free Probability for Probabilists, 2000, preprint.
  • 14. Bohigas, O.; Giannoni, M., Chaotic Motion and Random Matrix Theories. In Mathematical and Computational Methods in Nuclear Physics; Dehesa, J.L., Ed.; Springer Lecture Notes in Physics, 1984, 209, 1-99. MR 86c:58129
  • 15. Borel, E., Sur les Principes de la Theorie Cinetique des Gaz. Annales, L'Ecole Normal Sup. 1906, 23, 9-32.
  • 16. Borodin, A.; Olshansky, G., Correlation Kernels Arising from the Infinite-Dimensional Unitary Group and Its Representations. University of Pennsylvania, Department of Mathematics, 2001, preprint.
  • 17. Böttcher, A. and Silbermann, B., Introduction to Large Truncated Toeplitz Matrices. Springer-Verlag: New York, 1999. MR 2001b:47043
  • 18. Bougerol, Ph. and Jeulin, Th., Paths in Weyl Chambers and Random Matrices. Laboratoire de Probabilities: Paris 2001, preprint.
  • 19. Boutet de Monvel, A.; Pastur, L.; Shcherbina, M., On the Statistical Mechanics Approach in the Random Matrix Theory: Integrated Density of States. Jour. Statist. Phys. 1995, 79, 585-611. MR 96d:82033
  • 20. Bump, D. and Diaconis, P., Toeplitz Minors. Jour. Combin. Th. A. 2002, 97, 252-271. MR 2002j:47052
  • 21. Bump, D.; Diaconis, P.; Keller, J., Unitary Correlations and the Fejer Kernel. Mathematical Phys., Analysis, Geometry 2002, 5, 101-123.
  • 22. Conrey, B., $L$-Functions and Random Matrices. In Mathematics Unlimited 2001 and Beyond; Enquist, B., Schmid, W. Eds.; Springer-Verlag: Berlin, 2001; 331-352.
  • 23. Conrey, B.; Farmer, D.; Keating, J.; Rubinstein, M.; Snaith, W., Correlation of Random Matrix Polynomials. Technical Report, American Institute of Mathematics, 2002.
  • 24. Coram, M.; Diaconis, P., New Tests of the Correspondence Between Unitary Eigenvalues and the Zeros of Riemann's Zeta Function. Jour. Phys. A. 2002, to appear.
  • 25. Daley, D.; Verre-Jones, D., An Introduction to the Theory of Point Processes. Springer-Verlag: New York, 1988. MR 90e:60060
  • 26. Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes #3, NYU/Courant Institute: New York, and Amer. Math. Soc.: Providence, RI, 1999. MR 2000g:47048
  • 27. Deift, P., Integrable Systems and Combinatorial Theory. Notices, Amer. Math. Soc. 2000, 47, 631-640. MR 2001g:05012
  • 28. Diaconis, P., Group Representations in Probability and Statistics. Ins. Math. Statist., Hayward, CA, 1986. MR 90a:60001
  • 29. Diaconis, P., Applications of the Method of Moments in Probability and Statistics. In Moments in Mathematics; Landau, H., Ed.; Amer. Math. Soc.: Providence, RI, 1987; 125-142. MR 89m:60006
  • 30. Diaconis, P.; Shahshahani, M., Products of Random Matrices as They Arise in the Study of Random Walks on Groups. Contemp. Math. 1986, 50, 183-195. MR 87k:60025
  • 31. Diaconis, P.; Shahshahani, M., The Subgroup Algorithm for Generating Uniform Random Variables. Prob. Eng. and Info. Sci. 1987, 1, 15-32.
  • 32. Diaconis, P.; Shahshahani, M., On the Eigenvalues of Random Matrices. In Studies in Applied Probablility; Gani, J., Ed.; Jour. Appl. Probab.: Special Vol. 31A, 1994; 49-62. MR 95m:60011
  • 33. Diaconis, P.; Evans, S., Linear Functionals of Eigenvalues of Random Matrices. Transactions Amer. Math. Soc. 2001, 353, 2615-2633. MR 2002d:60003
  • 34. Diaconis, P.; Evans, S., Immanants and Finite Point Processes. Jour. Combin. Th. A. 2000, 91, 305-321. MR 2001m:15018
  • 35. Diaconis, P.; Evans, S., A Different Construction of Gaussian Fields from Markov Chains: Dirichlet Covariances. Ann. Inst. Henri Poincaré, 2002, to appear.
  • 36. Diaconis, P.; Freedman, D., A Dozen deFinetti-Style Results in Search of a Theory. Ann. Inst. Henri Poincaré, 1987, 23, 397-423. MR 88f:60072
  • 37. Diaconis, P.; Eaton, M.; Lauritzan, S., Finite deFinetti Theorems in Linear Models and Multivariate Analysis. Scand. Jour. Statist. 1992, 19, 289-315. MR 94g:60065
  • 38. Dyson, F., Statistical Theory of the Energy Levels of Complex Systems, I, II, III. J. Math. Phys. 1962, 3, 140-156, 157-165, 166-175. MR 26:1111, MR 26:1112, MR 26:1113
  • 39. Dyson, F., Correlations Between Eigenvalues of a Random Matrix. Comm. Math. Phys. 1970, 19, 235-250. MR 43:4398
  • 40. Eaton, M., Multivariate Statistics; Wiley: New York, 1983. MR 86i:62086
  • 41. Edelman, A.; Kostlan, E.; Shub, M., How Many Eigenvalues of a Random Matrix Are Real? Jour. Amer. Math. Soc. 1994, 7, 297-267. MR 94f:60053
  • 42. Forrester, P.; Rains, E., Inter-Relationships Between Orthogonal, Unitary and Symplectic Matrix Ensembles. MSRI Publications 2001, 40, 171-207. MR 2002h:82008
  • 43. Fulman, J., Random Matrix Theory Over Finite Fields. Bull. Amer. Math. Soc. 2002, 39, 51-86. MR 2002i:60012
  • 44. Fulton, W., Eigenvalues, Invariant Factors, Highest Weights and Schubert Calculus. Bull. Amer. Math. Soc. 2000, 37, 209-249. MR 2001g:15023
  • 45. Fyodorov, Y.; Khoruzhenko, B.; Sommers, H., Universality in the Random Matrix Spectra in the Regime of Weak Non-Hermiticity. Ann. Inst. Henri Poincaré: Physique Théorique 1998, 68, 440-489. MR 99i:60080
  • 46. Goldsheid, I.; Khoruzhenko, B., Eigenvalue Curves of Asymmetric Tri-Diagonal Random Matrices. Electronic Jour. Probab. 2000, 5, Paper 16. MR 2002j:82061
  • 47. Goodman, R.; Wallach, W., Representations and Invariants of the Classical Groups. Cambridge Press: Cambridge, 1998. MR 99b:20073
  • 48. Grenander, U.; Szegö, G., Toeplitz Forms and Their Applications. University of California Press: Berkeley, 1958. MR 20:1349
  • 49. Haake, F., Secular Determinants of Random Unitary Matrices. Jour. Pys. A. 1996, 29, 3641-3658. MR 97g:82002
  • 50. Haake, F., Quantum Signatures of Chaos, 2nd Ed.; Springer-Verlag: Berlin, 2001.
  • 51. Hanlon, P.; Stanley, R.; Stembridge, J., Some Combinatorial Aspects of the Spectra of Normally Distributed Random Matrices. Contemp. Math. 1992, 138, 151-174. MR 93j:05164
  • 52. Hirschman, I., The Strong Szegö Limit Theorem for Toeplitz Determinants. Amer. Jour. Math. 1966, 88, 577-614. MR 35:2064
  • 53. Hughes, C.; Keating, J.; O'Connell, W., On the Characteristic Polynomial of a Random Unitary Matrix. Comm. Math. Phys. 2001, 220, 429-451. MR 2002m:82028
  • 54. Hughes, C.; Rudnick, Z., Mock-Gaussian Behavior for Linear Statistics of Classical Compact Groups. Department of Mathematics, Tel Aviv University, 2002, preprint.
  • 55. Johansson, K., On Szegö's Asymptotic Formula for Toeplitz Determinants and Generalizations. Bull. Sc. Math. 1988, 112, 257-304. MR 89m:47021
  • 56. Johansson, K., On Random Matrices from the Compact Classical Groups. Ann. Math. 1997, 145, 519-545. MR 98e:60016
  • 57. Johansson, K., The Longest Increasing Subsequence in a Random Permutation and a Unitary Random Matrix Model. Math. Res. Lett. 1998, 5, 63-82. MR 99e:60033
  • 58. Johnstone, I., On the Distribution of the Largest Eigenvalue in Principal Component Analysis. Ann. Statist. 2001, 29, 295-327. MR 2002i:62115
  • 59. Katz, N.; Sarnak, P., Random Matrices, Frobenius Eigenvalues, and Monodromy. Amer. Math. Soc.: Providence, RI, 1999. MR 2000b:11070
  • 60. Keating, J.; Snaith, N., Random Matrix Theory and $\xi (\frac{1}{2} + it)$. Commun. Math. Phys. 2000, 214, 57-89. MR 2002c:11107
  • 61. Keating, J.; Snaith, N., Random Matrix Theory and $L$-Functions at $s = \frac{1}{2}$. Commun. Math. Phys. 2000, 214, 91-110. MR 2002c:11108
  • 62. Kiessling, M.; Spohn, H., A Note on the Eigenvalue Density of Random Matrices. Comm. Math. Phys. 1999, 199, 638-695. MR 2000a:82031
  • 63. Macchi, O., Stochastic Processes and Multicoincidences. IEEE Transactions 1971, 17, 1-7.
  • 64. Macchi, O., The Coincidence Approach to Stochastic Point Processes. Adv. Appl. Probab. 1975, 7, 83-122. MR 52:1876
  • 65. MacDonald, I., Symmetric Functions and Hall Polynomials, 2nd Ed.; Clarendon Press: Oxford, 1995. MR 96h:05207
  • 66. Marchenko, V.; Pastur, L., Distribution of Some Sets of Random Matrices. Mat. Sb. 1967, 1, 507-536.
  • 67. Mardia, K.; Kent, J.; Bibby, J., Multivariate Analysis. Academic Press: New York, 1979. MR 81h:62003
  • 68. Mehta, M., Random Matrices, 2nd Ed.; Acad. Press: New York, 1991. MR 92f:82002
  • 69. Mezzadri, F., Random Matrix Theory and the Zeros of $\xi^\prime (s)$. Dept. of Mathematics, University of Bristol, 2002, preprint.
  • 70. Muirhead, R., Latent Roots and Matrix Variates: A Review of Some Aymptotic Results. Ann. Statist. 1978, 6, 5-33. MR 56:16919
  • 71. Odlyzko, A., On the Distribution of Spacings Between Zeros of the Zeta Function. Math. Comp. 1987, 48, 273-308. MR 88d:11082
  • 72. Odlyzko, A., The $10^{20}$-th Zero of the Riemann Zeta Function and 175 Million of Its Neighbors. ATT Laboratories, 1992, preprint.
  • 73. O'Connell, N., Random Matrices, Non-Colliding Processes and Queues. Laboratoire de Probabilites, Paris 6, 2002, preprint.
  • 74. O'Connell, N.; Yor, M., Brownian Analogues of Burke's Theorem. Stoch. Proc. Appl. 2001, 96, 285-304. MR 2002h:60175
  • 75. Okounkov, A., Random Matrices and Random Permutations. Math. Res. Notices 2000, 20, 1043-1095. MR 2002c:15045
  • 76. Olshansky, G., An Introduction to Harmonic Analysis on the Infinite-Dimensional Unitary Group. University of Pennsylvania, Dept. of Mathematics, 2001, preprint.
  • 77. Olshanski, G.; Vershik, A., Ergodic Unitarily Invariant Measures on the Space of Infinite Hermitian Matrices. In Contemporary Mathematical Physics; Amer. Soc. Transl. Ser. 2, 1996, 175, 137-175. MR 98e:28015
  • 78. Pickrell, D., Mackey Analysis of Infinite Classical Motion Groups. Pacific Jour. 1991, 150, 139-166. MR 92g:22041
  • 79. Porod, U., The Cut-Off Phenomenon for Random Reflections. Ann. Probab. 1996, 24, 74-96. MR 97e:60012
  • 80. Rains, E., High Powers of Random Elements of Compact Lie Groups. Probab. Th. Related Fields 107, 219-241. MR 98b:15026
  • 81. Rains, E., Images of Eigenvalue Distributions Under Power Maps. ATT Laboratories, 1999, preprint.
  • 82. Rains, E., Probability Theory on Compact Classical Groups., Harvard University: Department of Mathematics, 1991, Ph.D. thesis.
  • 83. Rosenthal, J., Random Rotations, Characters and Random Walks on SO(N). Ann Probab. 1994, 22, 398-423. MR 95c:60008
  • 84. Sinai, Y.; Soshnikov, A., Central Limit Theorem for Traces of Large Random Symmetric Matrices with Independent Matrix Elements. Bol. Soc. Brasil. Mat. (N.S.) 1998, 29, 1-24. MR 99f:60053
  • 85. Sloane, N., Encrypting by Random Rotations. Technical Memorandum, Bell Laboratories, 1983.
  • 86. Soshnikov, A., The Central Limit Theorem for Local Linear Statistics in Classical Compact Groups and Related Combinatorial Identities. Ann. Probab. 2000, 28, 1353-1370. MR 2002f:15035
  • 87. Soshnikov, A., Level Spacings Distribution for Large Random Matrices: Gaussian Fluctuations. Ann. Math. 1998, 148, 573-617. MR 2000f:15014
  • 88. Soshnikov, A., Determinantal Random Point Fields. Russian Math. Surveys 2000, 55, 923-975. MR 2002f:60097
  • 89. Stanley, R., Enumerative Combinatorics. Vol. 2; Cambridge University Press: Cambridge, 1999. MR 2000k:05026
  • 90. Tracy, C.; Widom, H., Introduction to Random Matrices. In Geometric and Quantum Aspects of Integrable Systems; Springer-Verlag: Berlin, 1993, 103-130. MR 95a:82050
  • 91. Tracy, C.; Widom, H., Random Unitary Matrices, Permutations and Painlevé. Comm. Math. Physics 1999, 207, 665-685. MR 2001h:15019
  • 92. Tracy, C.; Widom, H., On the Relations Between Orthogonal, Symplectic and Unitary Ensembles. Jour. Statist. Phys. 1999, 94, 347-363.
  • 93. Tracy, C.; Widom, H., Universality of the Distribution Functions of Random Matrix Theory. CRM Proceedings 2000, 26, 251-264. MR 2002f:15036
  • 94. Tracy, C.; Widom, H., On the Limit of Some Toeplitz-Like Determinants. SIAM J. Matrix Anal. Appl. 2002, 23, 1194-1196.
  • 95. Voiculescu, D., Lectures on Free Probability Theory. Springer Lecture Notes in Mathematics 2000, 1738, 279-349. MR 2001g:46121
  • 96. Wieand, K., Eigenvalue Distributions of Random Matrices in the Permutation Group and Compact Lie Groups, Harvard University: Department of Mathematics, 1998, Ph.D. thesis.
  • 97. Wieand, K., Eigenvalue Distributions of Random Permutation Matrices. Ann. Probab. 2000, 28, 1563-1587. MR 2002d:15027

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 00-02, 60B15

Retrieve articles in all journals with MSC (2000): 00-02, 60B15


Additional Information

Persi Diaconis
Affiliation: Department of Mathematics and Statistics, Stanford University, Stanford, CA 94305
Email: diaconis@math.stanford.edu

DOI: https://doi.org/10.1090/S0273-0979-03-00975-3
Received by editor(s): October 10, 2002
Published electronically: February 12, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society