Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Michael Harris and Richard Taylor
Title: The geometry and cohomology of some simple Shimura varieties
Additional book information: with an appendix by Vladimir G. Berkovich, Annals of Mathematics Studies, Number 151, Princeton University Press, Princeton, NJ, 2001, viii + 276 pp., ISBN 0-691-09092-0, $35.00, paperback; ISBN 0-691-09090-4, $65.00, cloth

References [Enhancements On Off] (What's this?)

  • 1. H. Carayol, Preuve de la conjecture de Langlands locale pour $GL_n$: travaux de Harris-Taylor et Henniart. Sém. Bourbaki no. 857. Astérisque no. 266, SMF, Paris (2000), 191-244. MR 2001i:11136
  • 2. P. Deligne, Les constantes des équations functionelles des functions $L$. Modular Forms II, Lecture Notes in Math. 349, Springer-Verlag (1973), 501-595. MR 50:2128
  • 3. M. Harris, On the local Langlands correspondence. To appear in Proc. of the Beijing ICM, 2002. Also available at http://www.math.jussieu.fr/~harris.
  • 4. G. Henniart, Caractérisation de la correspondence de Langlands par les facteurs $\varepsilon$ de paires. Invent. Math. 113 (1993), 339-350. MR 96e:11078
  • 5. G. Henniart, Une preuve simple des conjectures de Langlands pour $GL(n)$ sur un corps $p$-adique. Invent. Math. 139 (2000), 439-455. MR 2001e:11052
  • 6. G. Henniart, A report on the proof of the Langlands conjectures for $GL(N)$ over $p$-adic fields. Current Developments in Mathematics 1999. International Press (1999).
  • 7. G. Henniart, Sur la conjecture de Langlands locale pour $GL_n$. J. Théor. Nombres Bordeaux 13 (2001), no. 1, 167-187. MR 2002f:11178
  • 8. H. Jacquet, I. I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions. Amer. J. Math. 105 (1983), 367-483. MR 85g:11044
  • 9. R. Taylor, Galois Representations. Preprint. Available at http://www.math.harvard. edu/rtaylor.
  • 10. A. V. Zelevinsky, Induced representations of reductive $p$-adic groups: on irreducible representations of $GL(n)$. Ann. Scient. Éc. Norm. Sup. (4) 13 (1980), 165-210. MR 83g:22012

Review Information:

Reviewer: Alan Roche
Affiliation: University of Oklahoma
Email: aroche@math.ou.edu
Journal: Bull. Amer. Math. Soc. 40 (2003), 239-246
MSC (2000): Primary 11G18, 11F70, 14G35, 22E50
Published electronically: February 12, 2003
Review copyright: © Copyright 2003 American Mathematical Society
American Mathematical Society