Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Alexander Lubotzky and Dan Segal
Title: Subgroup growth
Additional book information: Birkhäuser, Basel, 2003, 476 pp., ISBN 3-7643-6989-2, $148.00

References [Enhancements On Off] (What's this?)

  • [Bas72] Hyman Bass.
    The degree of polynomial growth of finitely generated nilpotent groups.
    Proc. London Math. Soc. (3), 25:603-614, 1972. MR 52:577
  • [dSG00] Marcus du Sautoy and Fritz Grunewald.
    Analytic properties of zeta functions and subgroup growth.
    Ann. of Math. (2), 152(3):793-833, 2000. MR 2002h:11084
  • [dSS00] Marcus du Sautoy and Dan Segal.
    Zeta functions of groups.
    In New horizons in pro-$p$ groups, volume 184 of Progr. Math., pages 249-286. Birkhäuser Boston, Boston, MA, 2000. MR 2001h:11123
  • [Gro81] Mikhael Gromov.
    Groups of polynomial growth and expanding maps.
    Inst. Hautes Études Sci. Publ. Math., (53):53-73, 1981. MR 83b:53041
  • [GSS88] F. J. Grunewald, D. Segal, and G. C. Smith.
    Subgroups of finite index in nilpotent groups.
    Invent. Math., 93(1):185-223, 1988. MR 89m:11084
  • [Hal49] Marshall Hall, Jr.
    Subgroups of finite index in free groups.
    Canadian J. Math., 1:187-190, 1949. MR 10:506a
  • [L88] Alexander Lubotzky.
    A group theoretic characterization of linear groups.
    J. Algebra, 113(1):207-214, 1988. MR 89c:20066
  • [LM91] Alexander Lubotzky and Avinoam Mann.
    On groups of polynomial subgroup growth.
    Invent. Math., 104(3):521-533, 1991. MR 92d:20038
  • [LMS93] Alexander Lubotzky, Avinoam Mann, and Dan Segal.
    Finitely generated groups of polynomial subgroup growth.
    Israel J. Math., 82(1-3):363-371, 1993. MR 95b:20051
  • [MS90] Avinoam Mann and Dan Segal.
    Uniform finiteness conditions in residually finite groups.
    Proc. London Math. Soc. (3), 61(3):529-545, 1990. MR 91j:20093
  • [P] Laszlo Pyber.
    Groups of intermediate subgroup growth and a problem of Grothendieck.
    To appear.
  • [PS96] Laszlo Pyber and Aner Shalev.
    Groups with super-exponential subgroup growth.
    Combinatorica, 16(4):527-533, 1996. MR 98g:20044
  • [Seg01] Dan Segal.
    The finite images of finitely generated groups.
    Proc. London Math. Soc. (3), 82(3):597-613, 2001. MR 2002b:20033
  • [Tit72] Jacques Tits.
    Free subgroups in linear groups.
    J. Algebra, 20:250-270, 1972. MR 44:4105
  • [Zel90] Efim I. Zel$'$manov.
    Solution of the restricted Burnside problem for groups of odd exponent.
    Izv. Akad. Nauk SSSR Ser. Mat., 54(1):42-59, 221, 1990. MR 91i:20037
  • [Zel91] Efim I. Zel$'$manov.
    Solution of the restricted Burnside problem for $2$-groups.
    Mat. Sb., 182(4):568-592, 1991. MR 93a:20063

Review Information:

Reviewer: Rostislav I. Grigorchuk
Affiliation: Texas A&M University
Email: grigorch@math.tamu.edu
Journal: Bull. Amer. Math. Soc. 41 (2004), 253-256
MSC (2000): Primary 20E07
Keywords: Subgroup growth
Published electronically: December 16, 2003
Review copyright: © Copyright 2003 American Mathematical Society
American Mathematical Society