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One of the most important auxiliary objects associated with an operator algebra
is its state space. The two books under review describe the authors’ solutions,
obtained together with H. Hanche-Olsen and B. Tochum [1]}, [2], [9], to the problems:
What data must be added to a state space so that the operator algebra can be
recovered? and Which convex sets can arise as state spaces? As that work is now
around twenty years old, they are able to present it here in a very finished form.

Operator algebras come in two varieties, C*-algebras and von Neumann algebras.
(My friends who work in the non self-adjoint theory will forgive me for using the
term in this way for the purposes of this review.) Concretely, a C*-algebra is a
linear subspace of B(H) (the space of bounded operators on a complex Hilbert
space H) which is algebraically closed under operator products and adjoints and is
topologically closed in norm. Concrete von Neumann algebras are defined similarly,
now requiring closure in the weak* topology. There are abstract characterizations
as well: C*-algebras are complex Banach algebras equipped with an involution
satisfying ||z*z| = ||z|?, and von Neumann algebras are C*-algebras that have a
Banach space predual. We write A, B, ... for elements of concrete operator algebras
and x,y, ... for elements of abstract operator algebras.

What are they good for? The central motivation in the subject has always been
physics — more about this later — but in recent decades attention has been shifting
toward connections with other areas of mathematics. Indeed, operator algebras
arise naturally in a wide range of settings. If  is a compact Hausdorff topological
space, then C(£2), the set of continuous functions from Q into C, is a C*-algebra.
If X is a o-finite measure space, then L>°(X) is a von Neumann algebra. If G is
a locally compact group, then its left representation on the Hilbert space L?(G)
generates both a C*-algebra C*(G) and a von Neumann algebra W*(G). There
are operator algebras naturally associated to foliated manifolds [5], directed graphs
[6], Euclidean Bruhat-Tits buildings [13], and Poisson manifolds [15]. It sometimes
seems that almost every mathematical object has a naturally associated operator
algebra! Moreover, operator algebra techniques have paid off handsomely with, for
example, major applications to group representations [7], the Novikov conjecture
[12], Connes’ index theorem for foliations [5], and Jones’ work in knot theory [I0].

In order to appreciate Alfsen and Shultz’s contribution, one needs to know a little
about states and order. Every concrete operator algebra admits a partial order
defined by setting A < B if B — A is positive semidefinite, i.e., (B — A)v,v) > 0
for all v € H. This is equivalent to the abstract definition x < y if y — x = 2*z for
some z, so it does not depend on the representation.
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Now if A is an operator algebra, then a state on A is a bounded linear functional
p: A— Csuch that ||p|| =1 and > 0 = p(z) > 0. In the von Neumann algebra
case, one is mainly interested in normal states, meaning that p should be weak™
continuous. The term “state” has to do with the fact that in quantum mechanics
the states of a physical system are modelled by unit vectors in a Hilbert space.
Given such a vector v, the map A — (Av,v) is an operator algebraic state on
B(H), and hence also on any concrete operator algebra nondegenerately contained
in B(H). Moreover, there is a sort of converse to this observation called the GNS
construction: if p is any state on an operator algebra 4, one can define an inner
product on A by setting (z,y) = p(y*x); factoring out null vectors and completing
then yields a Hilbert space on which A acts by left multiplication. The end result
will be a representation in which the original state p arises from a unit vector in
the preceding manner. Thus, states “are” unit vectors.

Following Alfsen and Shultz, from here on we assume that our C*-algebras are
unital. (Readers beware: this is sufficiently emphasized in the first volume, but
not in the second.) In the last paragraph we saw that states are closely related to
representations. The state space S(A) of all states on a C*-algebra A can also be a
useful tool via the following result. Note first that S(A) is a weak* compact convex
subset of the dual Banach space A’, and for each self-adjoint element z € A we
have a continuous affine function & : S(A) — R defined by #(p) = p(z). Now an
old theorem of Kadison [T1] states that the map x — & is an isometric isomorphism
from A, the self-adjoint part of A, onto the space of all continuous affine functions
from S(A) into R. For von Neumann algebras one considers the normal state space
S.(A) of weak* continuous states and gets an isometric isomorphism of Ay, with
the space of bounded affine functions on S.(A). Alas, normal state spaces are
generally not compact in any useful topology, which complicates matters in the von
Neumann algebra case.

By Kadison’s theorem, given S(.A) one can immediately recover Ay, as a real
Banach space; less obviously, this actually determines A as a complex Banach
space. Moreover, it is elementary that > 0 if and only if #(p) > 0 for all p and
that 14(p) = 1 for all p where 14 is the unit of A. Thus, one also recovers the
order and the unit of A from S(A). However, the product in A is not uniquely
determined in general. Indeed, granting that there exist C*-algebras which are
not isomorphic to their “opposite” algebra obtained by reversing the order of the
product (a surprisingly difficult fact; see e.g. [16]), it follows that one cannot hope
to entirely recover A from S(A), since S(A) = S(A°P) always holds.

The extra structure that needs to be added to S(A) in order to fully determine
the C*-algebra A is simple but unexpected. It hinges on a basic fact about S(.A)
that every operator algebraist should know and that I did not know before reviewing
these books: the smallest face of S(A) containing a given pair of distinct pure states
is a line segment if the states are inequivalent, and it is a 3-ball if the states are
equivalent. (A state is pure if it is an extreme point of S(A); two pure states
are equivalent if they give rise via the GNS construction to unitarily equivalent
representations; a 3-ball is a convex set that is affinely isomorphic to a closed
Euclidean ball in R3.) Now .A induces an orientation of every 3-ball face of S(A),
and these orientations vary continuously in an appropriate sense. The central result
of the first volume under review states that the product in A can be recovered from
this extra data. Even more remarkably, continuously varying orientations of the
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facial 3-balls of S(A) are in one-to-one correspondence with products which make
A as an ordered Banach space into a C*-algebra. There is also a von Neumann
algebra version of this result which is simpler in some respects but less quotable.

The second volume is directed toward establishing a characterization of those
convex sets which arise as state spaces or normal state spaces. The solution is
slightly complicated — not terribly so, but enough that I prefer not to try to
describe it here. Jordan algebras, which were already a background presence in the
first volume, now become crucial; their general theory occupies almost half of the
second volume, so let me say a little about them.

The Jordan product in an operator algebra is the symmetrized product x oy =
%(my + yx). Recall that the C*-algebra product in general cannot be recovered
from S(A). However, the Jordan product can. In fact, given the underlying vector
space of A, the order plus the unit determines the Jordan product, and vice versa
(and both determine the norm). This shows why Jordan algebras are relevant to
the problem of characterizing state spaces of operator algebras: the natural first
step is to characterize state spaces of Jordan algebras, where orientation issues are
not present.

Many readers will already know that a (real) Jordan algebra is a vector space
over R together with a commutative, but generally not associative, bilinear product
o that satisfies the identity (2% o y) oz = 22 o (y o x). Here we are interested in
JB-algebras, which are Banach spaces equipped with a Jordan product that is
compatible with the norm in a natural way, and JBW-algebras, which are JB-
algebras that are dual Banach spaces. With the Jordan product described above,
the self-adjoint part of any C*-algebra is a JB-algebra, and the self-adjoint part of
any von Neumann algebra is a JBW-algebra. The work of Alfsen and Shultz et al. is
the best example of an application of JB-algebras to the theory of operator algebras,
and they are also useful in the study of infinite-dimensional complex domains [I4]
and in other areas [17].

I mentioned earlier that operator algebras have important connections to physics;
let me come back to that now. In quantum mechanics a physical system is mod-
elled by a Hilbert space, with states of the system represented by unit vectors and
“observable” or physically meaningful variables represented by self-adjoint opera-
tors. Alternatively, one can take an operator algebra as primary and obtain Hilbert
space representations via the GNS construction. Physicists probably find this ap-
proach most compelling in situations where intuitively “the same” physical system
can be inequivalently realized on different Hilbert spaces. Formally, this means
that one considers multiple representations of the same operator algebra. Specifi-
cally, this happens (1) in quantum statistical mechanics [4] where different values
of temperature typically give rise to inequivalent representations of a single oper-
ator algebra and (2) in quantum field theory on curved spacetimes [I8] where the
vacuum representations according to different observers are generally inequivalent.

It seems to be fairly widely believed that Jordan algebras, more specifically JB-
algebras, are really the proper tool in this arena, although very few people actually
use them. (A rare partial exception is [§].) Alfsen and Shultz raise this point
and emphasize the connection with physics repeatedly throughout their two books.
Indeed, Jordan algebras were originally conceived as a model for the bounded ob-
servables of a quantum-mechanical system. The idea was to find axioms satisfied
by the set of self-adjoint operators in B(H) which could be justified on physical
grounds, with the dual aims of conceptually clarifying the quantum theory and of
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broadening that theory in hopes of accommodating problematic physical systems
such as those involving quantum fields. However, neither of these goals was ever
really achieved. The physical justification for even the Jordan algebra axioms (in
particular, that the sum of two observables must be observable) was never all that
convincing, and Jordan algebras turned out to be no help at all in dealing with
field theoretic issues. Still, hopes of finding a profitable use of Jordan algebras in
quantum mechanics persist (see e.g. [3]).

The exposition in these two volumes is excellent, and the work they describe
is certainly a tour de force, but the ultimate results characterizing state spaces
seem difficult to apply because one is unlikely to be able to actually verify the
stated conditions in any given case. Probably the recovery of A from S(A) with
orientation described in the first volume will be more useful for the working operator
algebraist. On the other hand, many people now feel that “matrix order”, the
sequence of order structures on the matrix algebras M,,(A) for n € N, is in some
sense more fundamental than order at the level n = 1. For instance, the sequence
of state spaces S(M,,(A)) does completely determine the C*-algebra A. This raises
the question: Which sequences of convex sets can arise as the sequence of state
spaces of matrix algebras over a C*-algebra?
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