Recent progress on the Poincaré conjecture and the classification of 3manifolds
Author:
John W. Morgan
Journal:
Bull. Amer. Math. Soc. 42 (2005), 5778
MSC (2000):
Primary 57M50, 57M27, 58J35
Published electronically:
October 29, 2004
MathSciNet review:
2115067
Fulltext PDF
References 
Similar Articles 
Additional Information
 1.
Yu.
Burago, M.
Gromov, and G.
Perel′man, A. D. Aleksandrov spaces with curvatures bounded
below, Uspekhi Mat. Nauk 47 (1992), no. 2(284),
3–51, 222 (Russian, with Russian summary); English transl., Russian
Math. Surveys 47 (1992), no. 2, 1–58. MR 1185284
(93m:53035), http://dx.doi.org/10.1070/RM1992v047n02ABEH000877
 2.
Jeff
Cheeger and Mikhael
Gromov, Collapsing Riemannian manifolds while keeping their
curvature bounded. I, J. Differential Geom. 23
(1986), no. 3, 309–346. MR 852159
(87k:53087)
Jeff
Cheeger and Mikhael
Gromov, Collapsing Riemannian manifolds while keeping their
curvature bounded. II, J. Differential Geom. 32
(1990), no. 1, 269–298. MR 1064875
(92a:53066)
 3.
T. Colding and W. Minicozzi, ``Estimates for the extinction time for the Ricci flow on certain manifolds and a question of Perelman," arXiv.math.DG/0308090, August 25, 2003.
 4.
Daryl
Cooper, Craig
D. Hodgson, and Steven
P. Kerckhoff, Threedimensional orbifolds and conemanifolds,
MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000. With
a postface by Sadayoshi Kojima. MR 1778789
(2002c:57027)
 5.
Richard
S. Hamilton, Threemanifolds with positive Ricci curvature, J.
Differential Geom. 17 (1982), no. 2, 255–306.
MR 664497
(84a:53050)
 6.
Richard
S. Hamilton, The Harnack estimate for the Ricci flow, J.
Differential Geom. 37 (1993), no. 1, 225–243.
MR
1198607 (93k:58052)
 7.
Richard
S. Hamilton, The formation of singularities in the Ricci flow,
Surveys in differential geometry, Vol.\ II (Cambridge, MA, 1993) Int.
Press, Cambridge, MA, 1995, pp. 7–136. MR 1375255
(97e:53075)
 8.
Richard
S. Hamilton, Fourmanifolds with positive isotropic curvature,
Comm. Anal. Geom. 5 (1997), no. 1, 1–92. MR 1456308
(99e:53049)
 9.
Richard
S. Hamilton, Nonsingular solutions of the Ricci flow on
threemanifolds, Comm. Anal. Geom. 7 (1999),
no. 4, 695–729. MR 1714939
(2000g:53034)
 10.
John
Hempel, 3Manifolds, Princeton University Press, Princeton, N.
J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86.
MR
0415619 (54 #3702)
 11.
H. Kneser, ``Geschlossene Flächen in dreidimesnionalen Mannigfaltigkeiten," Jahresber. Deutsch. Math. Verbein 38 (1929), 248260.
 12.
John
Milnor, Groups which act on 𝑆ⁿ without fixed
points, Amer. J. Math. 79 (1957), 623–630. MR 0090056
(19,761d)
 13.
John
Milnor, Towards the Poincaré conjecture and the
classification of 3manifolds, Notices Amer. Math. Soc.
50 (2003), no. 10, 1226–1233. MR 2009455
(2004h:57022)
 14.
G.
Perelman, Spaces with curvature bounded below, Proceedings of
the International Congress of Mathematicians, Vol.\ 1, 2 (Zürich,
1994) Birkhäuser, Basel, 1995, pp. 517–525. MR 1403952
(97g:53055)
 15.
G. Perelman, ``The entropy formula for the Ricci flow and its geometric applications," arXiv.math.DG/0211159, November 11, 2002.
 16.
G. Perelman, ``Ricci flow with surgery on threemanifolds," arXiv.math.DG/0303109, March 10, 2003.
 17.
G. Perelman, ``Finite extinction time for the solutions to the Ricci flow on certain threemanifolds," arXiv.math.DG/0307245, July 17, 2003.
 18.
Henri
Poincaré, Œuvres. Tome VI, Les Grands Classiques
GauthierVillars. [GauthierVillars Great Classics], Éditions
Jacques Gabay, Sceaux, 1996 (French). Géométrie. Analysis
situs (topologie). [Geometry. Analysis situs (topology)]; Reprint of the
1953 edition. MR
1401792 (98m:01041)
 19.
Peter
Scott, The geometries of 3manifolds, Bull. London Math. Soc.
15 (1983), no. 5, 401–487. MR 705527
(84m:57009), http://dx.doi.org/10.1112/blms/15.5.401
 20.
H. Seifert, ``Topologie dreidimensionaler gefaserter Räume," Acta Math. 60 (1933), 147288.
 21.
WanXiong
Shi, Deforming the metric on complete Riemannian manifolds, J.
Differential Geom. 30 (1989), no. 1, 223–301.
MR
1001277 (90i:58202)
 22.
Takashi
Shioya and Takao
Yamaguchi, Collapsing threemanifolds under a lower curvature
bound, J. Differential Geom. 56 (2000), no. 1,
1–66. MR
1863020 (2002k:53074)
 23.
T. Shioya and T. Yamaguchi, ``Volume collapsed threemanifolds with a lower curvature bound," arXiv.math.DG/0304472, April 15, 2003.
 24.
William
P. Thurston, Threedimensional geometry and topology. Vol. 1,
Princeton Mathematical Series, vol. 35, Princeton University Press,
Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
(97m:57016)
 1.
 Y. Burago, M. Gromov and G. Perelman, ``A. D. Aleksandrov spaces with curvature bounded below," Russian Math. Surveys 47 (1992), 158. MR 1185284 (93m:53035)
 2.
 J. Cheegar and M. Gromov, ``Collapsing Riemannian manifolds while keeping their curvatures bounded, I, II." J. Differential Geom. 23 (1986), 309346; 32 (1990), 269298. MR 0852159 (87k:53087); MR 1064875 (92a:53066)
 3.
 T. Colding and W. Minicozzi, ``Estimates for the extinction time for the Ricci flow on certain manifolds and a question of Perelman," arXiv.math.DG/0308090, August 25, 2003.
 4.
 D. Cooper, C. Hodgson, S. Kerchoff, dimensional orbifolds and conemanifolds, Math. Soc. Japan Memoirs, Vol. 5, Tokyo, 2000. MR 1778789 (2002c:57027)
 5.
 R. Hamilton, ``Threemanifolds with positive Ricci curvature," J. Differential Geom. 17 (1982), 255306. MR 0664497 (84a:53050)
 6.
 R. Hamilton, ``The Harnack estimate for the Ricci flow," J. Differential. Geom. 37 (1993), 225243. MR 1198607 (93k:58052)
 7.
 R. Hamilton, ``Formation of singularities in the Ricci flow," Surveys in Differential Geometry 2, 7136, International Press, 1995. MR 1375255 (97e:53075)
 8.
 R. Hamilton, ``Fourmanifolds with positive isotropic curvature," Comm. Anal. Geom. 5 (1997), 192. MR 1456308 (99e:53049)
 9.
 R. Hamilton, ``Nonsingular solutions of the Ricci flow on threemanifolds," Comm. Analysis and Geometry 7 (1999), 695729. MR 1714939 (2000g:53034)
 10.
 J. Hempel, manifolds, Ann. of Math. Studies, Vol. 86, Princeton University Press, 1976. MR 0415619 (54:3702)
 11.
 H. Kneser, ``Geschlossene Flächen in dreidimesnionalen Mannigfaltigkeiten," Jahresber. Deutsch. Math. Verbein 38 (1929), 248260.
 12.
 J. Milnor, ``Groups which act on without fixed points," Amer. Journal of Math. 79 (1957), 623630. MR 0090056 (19:761d)
 13.
 J. Milnor, ``Towards the Poincaré Conjecture and the classification of manifolds," Notices AMS 50 (2003), 12261233. MR 2009455 (2004h:57022)
 14.
 G. Perelman, ``Spaces with curvature bounded below," Proceedings of ICM 1994, 517525, Birkhäuser, 1995. MR 1403952 (97g:53055)
 15.
 G. Perelman, ``The entropy formula for the Ricci flow and its geometric applications," arXiv.math.DG/0211159, November 11, 2002.
 16.
 G. Perelman, ``Ricci flow with surgery on threemanifolds," arXiv.math.DG/0303109, March 10, 2003.
 17.
 G. Perelman, ``Finite extinction time for the solutions to the Ricci flow on certain threemanifolds," arXiv.math.DG/0307245, July 17, 2003.
 18.
 H. Poincaré, ``Cinquième complément à l'analysis situs," Rend. Circ. Mat. Palermo 18 (1904), 45110. (See Oeuvres, Tome VI, Paris, 1953, p. 498.) MR 1401792 (98m:01041)
 19.
 P. Scott, ``The geometries of manifolds," Bull. London Math. Soc. 15 (1983), 401487. MR 0705527 (84m:57009)
 20.
 H. Seifert, ``Topologie dreidimensionaler gefaserter Räume," Acta Math. 60 (1933), 147288.
 21.
 WX. Shi, ``Deforming the metric on complete riemannian manifolds,'' J. Differential Geom. 30 (1989), 223301. MR 1001277 (90i:58202)
 22.
 T. Shioya and T. Yamaguchi, ``Collapsing threemanifolds under a lower curvature bound," J. Differential Geom. 56 (2000), 166. MR 1863020 (2002k:53074)
 23.
 T. Shioya and T. Yamaguchi, ``Volume collapsed threemanifolds with a lower curvature bound," arXiv.math.DG/0304472, April 15, 2003.
 24.
 W. Thurston, Threedimensional Geometry and Topology, Vol. 1 (Silvio Levy, ed.) Princeton Math. Ser., vol. 35, Princeton Univ. Press, 1997. MR 1435975 (97m:57016)
Similar Articles
Retrieve articles in Bulletin of the American Mathematical Society
with MSC (2000):
57M50,
57M27,
58J35
Retrieve articles in all journals
with MSC (2000):
57M50,
57M27,
58J35
Additional Information
John W. Morgan
Affiliation:
Department of Mathematics, Columbia University, New York, New York 10027
Email:
jm@math.columbia.edu
DOI:
http://dx.doi.org/10.1090/S0273097904010456
PII:
S 02730979(04)010456
Received by editor(s):
June 11, 2004
Received by editor(s) in revised form:
September 1, 2004
Published electronically:
October 29, 2004
Additional Notes:
Written version of a talk presented on January 9, 2004, in the “Current Events in Mathematics" session at the AMS national meeting in Phoenix, AZ
Article copyright:
© Copyright 2004
American Mathematical Society
