Recent progress on the Poincaré conjecture and the classification of 3-manifolds

Author:
John W. Morgan

Journal:
Bull. Amer. Math. Soc. **42** (2005), 57-78

MSC (2000):
Primary 57M50, 57M27, 58J35

Published electronically:
October 29, 2004

MathSciNet review:
2115067

Full-text PDF

References | Similar Articles | Additional Information

**1.**Yu. Burago, M. Gromov, and G. Perel′man,*A. D. Aleksandrov spaces with curvatures bounded below*, Uspekhi Mat. Nauk**47**(1992), no. 2(284), 3–51, 222 (Russian, with Russian summary); English transl., Russian Math. Surveys**47**(1992), no. 2, 1–58. MR**1185284**, 10.1070/RM1992v047n02ABEH000877**2.**Jeff Cheeger and Mikhael Gromov,*Collapsing Riemannian manifolds while keeping their curvature bounded. I*, J. Differential Geom.**23**(1986), no. 3, 309–346. MR**852159**

Jeff Cheeger and Mikhael Gromov,*Collapsing Riemannian manifolds while keeping their curvature bounded. II*, J. Differential Geom.**32**(1990), no. 1, 269–298. MR**1064875****3.**T. Colding and W. Minicozzi, ``Estimates for the extinction time for the Ricci flow on certain -manifolds and a question of Perelman," arXiv.math.DG/0308090, August 25, 2003.**4.**Daryl Cooper, Craig D. Hodgson, and Steven P. Kerckhoff,*Three-dimensional orbifolds and cone-manifolds*, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000. With a postface by Sadayoshi Kojima. MR**1778789****5.**Richard S. Hamilton,*Three-manifolds with positive Ricci curvature*, J. Differential Geom.**17**(1982), no. 2, 255–306. MR**664497****6.**Richard S. Hamilton,*The Harnack estimate for the Ricci flow*, J. Differential Geom.**37**(1993), no. 1, 225–243. MR**1198607****7.**Richard S. Hamilton,*The formation of singularities in the Ricci flow*, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR**1375255****8.**Richard S. Hamilton,*Four-manifolds with positive isotropic curvature*, Comm. Anal. Geom.**5**(1997), no. 1, 1–92. MR**1456308**, 10.4310/CAG.1997.v5.n1.a1**9.**Richard S. Hamilton,*Non-singular solutions of the Ricci flow on three-manifolds*, Comm. Anal. Geom.**7**(1999), no. 4, 695–729. MR**1714939**, 10.4310/CAG.1999.v7.n4.a2**10.**John Hempel,*3-Manifolds*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR**0415619****11.**H. Kneser, ``Geschlossene Flächen in drei-dimesnionalen Mannigfaltigkeiten," Jahresber. Deutsch. Math. Verbein**38**(1929), 248-260.**12.**John Milnor,*Groups which act on 𝑆ⁿ without fixed points*, Amer. J. Math.**79**(1957), 623–630. MR**0090056****13.**John Milnor,*Towards the Poincaré conjecture and the classification of 3-manifolds*, Notices Amer. Math. Soc.**50**(2003), no. 10, 1226–1233. MR**2009455****14.**G. Perelman,*Spaces with curvature bounded below*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 517–525. MR**1403952****15.**G. Perelman, ``The entropy formula for the Ricci flow and its geometric applications," arXiv.math.DG/0211159, November 11, 2002.**16.**G. Perelman, ``Ricci flow with surgery on three-manifolds," arXiv.math.DG/0303109, March 10, 2003.**17.**G. Perelman, ``Finite extinction time for the solutions to the Ricci flow on certain three-manifolds," arXiv.math.DG/0307245, July 17, 2003.**18.**Henri Poincaré,*Œuvres. Tome VI*, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1996 (French). Géométrie. Analysis situs (topologie). [Geometry. Analysis situs (topology)]; Reprint of the 1953 edition. MR**1401792****19.**Peter Scott,*The geometries of 3-manifolds*, Bull. London Math. Soc.**15**(1983), no. 5, 401–487. MR**705527**, 10.1112/blms/15.5.401**20.**H. Seifert, ``Topologie dreidimensionaler gefaserter Räume," Acta Math.**60**(1933), 147-288.**21.**Wan-Xiong Shi,*Deforming the metric on complete Riemannian manifolds*, J. Differential Geom.**30**(1989), no. 1, 223–301. MR**1001277****22.**Takashi Shioya and Takao Yamaguchi,*Collapsing three-manifolds under a lower curvature bound*, J. Differential Geom.**56**(2000), no. 1, 1–66. MR**1863020****23.**T. Shioya and T. Yamaguchi, ``Volume collapsed three-manifolds with a lower curvature bound," arXiv.math.DG/0304472, April 15, 2003.**24.**William P. Thurston,*Three-dimensional geometry and topology. Vol. 1*, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR**1435975**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (2000):
57M50,
57M27,
58J35

Retrieve articles in all journals with MSC (2000): 57M50, 57M27, 58J35

Additional Information

**John W. Morgan**

Affiliation:
Department of Mathematics, Columbia University, New York, New York 10027

Email:
jm@math.columbia.edu

DOI:
http://dx.doi.org/10.1090/S0273-0979-04-01045-6

Received by editor(s):
June 11, 2004

Received by editor(s) in revised form:
September 1, 2004

Published electronically:
October 29, 2004

Additional Notes:
Written version of a talk presented on January 9, 2004, in the “Current Events in Mathematics" session at the AMS national meeting in Phoenix, AZ

Article copyright:
© Copyright 2004
American Mathematical Society