Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Conformal invariants and partial differential equations


Author: Sun-Yung Alice Chang
Journal: Bull. Amer. Math. Soc. 42 (2005), 365-393
MSC (2000): Primary 53A30, 58J05, 35J60
DOI: https://doi.org/10.1090/S0273-0979-05-01058-X
Published electronically: April 13, 2005
MathSciNet review: 2149088
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. D. Adams; A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2), 128 (1988), 385-398. MR 0960950 (89i:46034)
  • 2. S. Alexakis; On conformally invariant differential operators in odd dimensions, Proc. Nat. Acad. Sci, no. 8, 100 (2003), 4409-4410. MR 1971495 (2004g:58046)
  • 3. M. Anderson; $L^2$ curvature and volume renormalization of the AHE metrics on 4-manifolds, Math. Res. Lett., 8 (2001), 171-188. MR 1825268 (2002k:53079)
  • 4. T. Aubin; Problemes isoperimetriques et espaces de Sobolov, J. Diff. Geom., 11 (1976), 573-598. MR 0448404 (56:6711)
  • 5. T. Aubin; Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55 (1976), 269-296. MR 0431287 (55:4288)
  • 6. T. Aubin; Meilleures constantes dans le theorem d'inclusion de Sobolev et un theorem de Fredholme non lineaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32 (1979), 148-174. MR 0534672 (80i:58043)
  • 7. A. Bahri and J. M. Coron; The scalar curvature problem on the standard three dimensional sphere, J. Funct. Anal., 95 (1991), 106-172. MR 1087949 (92k:58055)
  • 8. W. Beckner; Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138 (1993), 213-242. MR 1230930 (94m:58232)
  • 9. G. Bliss; An integral inequality, J. London Math. Soc., 5 (1930), 44-46.
  • 10. T. Branson; Differential operators canonically associated to a conformal structure, Math. Scand., 57 (1985), 293-345. MR 0832360 (88a:58212)
  • 11. T. Branson; The functional determinant, Lecture notes series, No. 4, Seoul National University, 1993. MR 1325463 (96g:58203)
  • 12. T. Branson; Sharp inequalities, the functional determinant and the complementary series, Trans. Amer. Math. Soc., 347 (1995), 3671-3742. MR 1316845 (96e:58162)
  • 13. T. Branson, S.-Y. A. Chang and P. Yang; Estimates and extremals for zeta-function determinants on four-manifolds, Comm. Math. Phys., 149 (1992), no. 2, 241-262. MR 1186028 (93m:58116)
  • 14. T. Branson and B. Ørsted; Explicit functional determinants in four dimensions, Proc. Amer. Math. Soc., 113 (1991), 669-682. MR 1050018 (92b:58238)
  • 15. S. Brendle; Global existence and convergence for a higher order flow in conformal geometry, Ann. of Math. (2), 158 (2003), no. 1, 323-343. MR 1999924 (2004e:53098)
  • 16. L. A. Caffarelli; A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. (2), 131 (1990), no. 1, 129-134. MR 1038359 (91f:35058)
  • 17. L. Caffarelli, L. Nirenberg and J. Spruck; The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), no. 3-4, 261-301. MR 0806416 (87f:35098)
  • 18. L. Caffarelli, B. Gidas and J. Spruck; Asymptotic symmetry and local behavior of semi-linear equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. MR 0982351 (90c:35075)
  • 19. G. Carron and M. Herzlich; The Huber theorem for non-compact conformally flat manifolds, Comment. Math. Helv., 77 (2002), 192-220. MR 1898398 (2003h:53048)
  • 20. L. Carleson and S.-Y. A. Chang; On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2), 110 (1986), 113-127. MR 0878016 (88f:46070)
  • 21. K.-C. Chang and J. Q. Liu; On Nirenberg's problem, Inter. J. Math., 4 (1993), 35-58. MR 1209959 (94a:58038)
  • 22. S.-Y. A. Chang, C.-C. Chen and C.-S. Lin; Extremal functions for a mean field equation in two dimension, Lectures on Partial Differential Equations in Honor of Louis Nirenberg's 75th Birthday, Chapter 4, International Press, 2003. MR 2055839
  • 23. S.-Y. A. Chang, F. Hang and P. Yang; On a class of locally conformally flat manifolds, Int. Math. Res. Not. 2004, no. 4, 185-209. MR 2040327
  • 24. S.-Y. A. Chang, M. Gursky and P. Yang; The scalar curvature equation on 2- and 3-spheres, Calculus of Variation, 1 (1993), 205-229. MR 1261723 (94k:53055)
  • 25. S.-Y. A. Chang, M. Gursky and P. Yang; An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math., 155 (2002), no. 3, 711-789. MR 1923964 (2003j:53048)
  • 26. S.-Y. A. Chang, M. Gursky and P. Yang; An a prior estimate for a fully nonlinear equation on four-manifolds, J. D'Analyse Math.; Thomas Wolff memorial issue, 87 (2002), 151-186. MR 1945280 (2003k:53036)
  • 27. S.-Y. A. Chang, M. Gursky and P. Yang; Entire solutions of a fully nonlinear equation, Lectures on Partial Differential Equations in Honor of Louis Nirenberg's 75th Birthday, Chapter 3, International Press, 2003. MR 2055838 (2005b:53053)
  • 28. S.-Y. A. Chang, M. Gursky and P. Yang; A conformally invariant sphere theorem in four dimensions, Publ. Math. Inst. Hautes Études Sci. No. 98, (2003), 105-143. MR 2031200 (2005b:53054)
  • 29. S.-Y. A. Chang and J. Qing; The zeta functional determinants on manifolds with boundary. I-the formula, J. Funct. Anal., 147 (1997), no. 2, 327-362. MR 1454485 (98f:58198)
  • 30. S.-Y. A. Chang, J. Qing and P. Yang; Compactification for a class of conformally flat 4-manifolds, Invent. Math., 142 (2000), 65-93. MR 1784799 (2001m:53061)
  • 31. S.-Y. A. Chang, J. Qing and P. Yang; On the topology of conformally compact Einstein 4-manifolds, Noncompact problems at the intersection of geometry, analysis, and topology, 49-61, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004. MR 2082390
  • 32. S.-Y. A. Chang, J. Qing and P. Yang; On renormalized volume on conformally compact Einstein manifold, preprint, 2003.
  • 33. S.-Y. A. Chang and P. Yang; Prescribing Gaussian curvature on $S^2$, Acta Math., 159 (1987), 215-259. MR 0908146 (88m:35056)
  • 34. S.-Y. A. Chang and P. Yang; Conformal deformation of metrics on $S^2$, J. Diff. Geom., 27 (1988), no. 2, 259-296. MR 0925123 (89b:53079)
  • 35. S.-Y. A. Chang and P. Yang; Extremal metrics of zeta functional determinants on 4-manifolds, Ann. of Math., 142 (1995), 171-212. MR 1338677 (96e:58034)
  • 36. W.X. Chen and C. Li; Classification of solutions of some non-linear elliptic equations, Duke Math. J., no. 3, 63 (1991), 615-622. MR 1121147 (93e:35009)
  • 37. C.-C. Chen and C.-S. Lin; Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), no. 12, 1667-1727. MR 2001443 (2004h:35065)
  • 38. C.-C. Chen and C.-S. Lin; Prescribing scalar curvature on $S^n$, Part I, A priori estimates, J. Diff. Geom., 57 (2002), 67-171. MR 1871492 (2002j:53038)
  • 39. S. Cohn-Vossen; Kürzest Wege und Totalkrümmung auf Flächen, Compositio Math., 2 (1935), 69-133.
  • 40. Z. Djadli, E. Hebey and M. Ledoux; Paneitz-type operators and applications, Duke Math. J., 104 (2000), no. 1, 129-169. MR 1769728 (2002f:58061)
  • 41. Z. Djadli, A. Malchiodi and M. O. Ahmedou; Prescribing a fourth order conformal invariant on the standard sphere, Part II: Blowup analysis and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1 (2002), no. 2, 387-434. MR 1991145 (2004i:53043)
  • 42. J. Escobar; The Yamabe problem on manifolds with boundary, J. Diff. Geom., 35 (1992), 21-84. MR 1152225 (93b:53030)
  • 43. C. Evans; Classical solutions of fully non-linear, convex, second order elliptic equations, Comm. Pure Appl. Math., XXXV (1982), 333-363. MR 0649348 (83g:35038)
  • 44. H. Fang; A conformal Gauss-Bonnet-Chern inequality for LCF manifolds and related topics, to appear in Calculus of Variations and PDE.
  • 45. C. Fefferman and C. R. Graham; Conformal invariants, In: Élie Cartan et les Mathématiques d'aujourd'hui. Asterisque (1985), 95-116. MR 0837196 (87g:53060)
  • 46. C. Fefferman and C. R. Graham; Q-curvature and Poincaré metrics, Math. Res. Lett., 9 (2002), nos. 2 and 3, 139-152. MR 1909634 (2003f:53053)
  • 47. C. Fefferman and K. Hiriachi; Ambient metric construction of Q-curvature in conformal and CR geometries, Math. Res. Lett., 10 (2003), 819-831. MR 2025058
  • 48. M. Flücher; Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comm. Math. Helv., 67 (1992), 471-497. MR 1171306 (93k:58073)
  • 49. L. Gårding; An inequality for hyperbolic polynomials, J. Math. Mech., 8 (1959), 957-965. MR 0113978 (22:4809)
  • 50. M. Del Mar González; Singular sets of a class of fully non-linear equations in conformal geometry, Ph.D. Thesis, Princeton University, 2004.
  • 51. A. R. Gover and L. Peterson; Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus, Comm. Math. Phys., 235 (2003), no. 2, 339-378. MR 1969732 (2004d:58047)
  • 52. C. R. Graham; Volume and area renormalizations for conformally compact Einstein metrics, The Proceedings of the 19th Winter School ``Geometry and Physics" (Srní, 1999). Rend. Circ. Mat. Palermo (2) Suppl. No. 63 (2000), 31-42. MR 1758076 (2002c:53073)
  • 53. C. R. Graham, R. Jenne, L. Mason, and G. Sparling; Conformally invariant powers of the Laplacian, I: existence, J. London Math. Soc. (2), 46 (1992), no. 2, 557-565. MR 1190438 (94c:58226)
  • 54. C. R. Graham and M. Zworski; Scattering matrix in conformal geometry, Invent. Math., 152 (2003), no. 1, 89-118. MR 1965361 (2004c:58064)
  • 55. B. Guan and J. Spruck; Boundary value problems on $S\sp n$for surfaces of constant Gauss curvature, Ann. of Math., 138 (1993), 601-624. MR 1247995 (94i:53039)
  • 56. P. Guan, J. Viaclovsky and G. Wang; Some properties of the Schouten tensor and applications to conformal geometry, Trans. Amer. Math. Soc., 355 (2003), no. 3, 925-933 (electronic). MR 1938739 (2003h:53054)
  • 57. P. Guan and G. Wang; A fully nonlinear conformal flow on locally conformally flat manifolds, J. Reine Angew. Math., 557 (2003), 219-238. MR 1978409 (2004e:53101)
  • 58. S. S. Gubser, I. R. Klebanov and A. M. Polyakov; Gauge theory correlators from non-critical string theory, Phys. Lett. B, 428 (1998), 105-114. MR 1630766 (99e:81204b)
  • 59. M. Gursky; The Weyl functional, deRham cohomology and Kahler-Einstein metrics, Ann. of Math. (2), 148 (1998), 315-337. MR 1652920 (99i:58036)
  • 60. M. Gursky; The principal eigenvalue of a conformally invariant differential operator, with an application to semi-linear elliptic PDE, Comm. Math. Phys., 207 (1999), 131-143. MR 1724863 (2000k:58029)
  • 61. M. Gursky and J. Viaclovsky; A new variational characterization of three-dimensional space forms, Invent. Math., 145 (2001), 251-278. MR 1872547 (2002j:53039)
  • 62. M. Gursky and J. Viaclovsky; A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Diff. Geom., 63 (2003), 131-154. MR 2015262 (2004h:53052)
  • 63. M. Gursky and J. Viaclovsky; Volume comparison and the $\sigma_k$-Yamabe problem, Adv. Math., 187 (2004), no. 2, 447-487. MR 2078344
  • 64. R. Hamilton; Four manifolds with positive curvature operator, J. Diff. Geom., 24 (1986), 153-179. MR 0862046 (87m:53055)
  • 65. Z.-C. Han; Prescribing Gaussian curvature on $S^2$, Duke Math. J., 61 (1990), 679-703. MR 1084455 (91m:58028)
  • 66. F. Hang and P. Yang; The Sobolev inequality for Paneitz operator on three manifolds, Calc. Var. Partial Differential Equations, 21 (2004), no. 1, 57-83. MR 2078747
  • 67. E. Hebey and F. Robert; Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Calc. of Var., 13 (2001), 491-517. MR 1867939 (2003m:58051)
  • 68. M. Henningson and K. Skenderis; The holographic Weyl anomaly, J. High. Energy Phys., 07 (1998), 023 hep-th/9806087; Holography and the Weyl anomaly, hep-th/9812032. MR 1644988 (99f:81162)
  • 69. C. W. Hong; A best constant and the Gaussian curvature, Proc. Amer. Math. Soc., 97 (1986), 737-747. MR 0845999 (87k:58284)
  • 70. A. Huber; On subharmonic functions and differential geometry in the large, Comm. Math. Helv., 32 (1957), 13-72. MR 0094452 (20:970)
  • 71. J. Kazdan and F. Warner; Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. of Math., 101 (1975), 317-331. MR 0375153 (51:11349)
  • 72. N.V. Krylov; Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk. SSSR Ser. Mat., 46 (1982), 487-523; English transl. in Math. USSR Izv., 20 (1983), 459-492. MR 0661144 (84a:35091)
  • 73. J. Lee; The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal. Geom., 3 (1995), no. 1-2, 253-271. MR 1362652 (96h:58176)
  • 74. Y. Li; Prescribing scalar curvature on $S^n$ and related problems, Part II: Existence and compactness, Comm. Pure and Appl. Math., XLIX (1996), 541-587. MR 1383201 (98f:53036)
  • 75. A. Li and Y. Li; A fully nonlinear version of the Yamabe problem and a Harnack type inequality, C. R. Math. Acad. Sci. Paris, 336 (2003), no. 4, 319-324. MR 1976311 (2004b:53055)
  • 76. A. Li and Y. Li; On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math., 56 (2003), no. 10, 1416-1464. MR 1988895 (2004e:35072)
  • 77. J. Maldacena; The large N-limit of super conformal field theories and supergravity, Adv. Theor. Math. Phys., 2 (1998), 231-252. MR 1633016 (99e:81204a)
  • 78. R. Mazzeo; The Hodge cohomology of a conformally compact metric, JDG, 28 (1988), 309-339. MR 0961517 (89i:58005)
  • 79. J. Moser; A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1091. MR 0301504 (46:662)
  • 80. J. Moser; On a non-linear problem in differential geometry, Dynamical Systems (Proc. Sympos. Univ. Bahia, Salvador, 1971), 273-280, Academic Press, New York, 1973. MR 0339258 (49:4018)
  • 81. R. Mazzeo and R. Melrose; Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., 75 (1987), 260-310. MR 0916753 (89c:58133)
  • 82. E. Onofri; On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326. MR 0677001 (84j:58043)
  • 83. B. Osgood, R. Phillips, and P. Sarnak; Extremals of determinants of Laplacians, J. Funct. Anal., 80 (1988), 148-211. MR 0960228 (90d:58159)
  • 84. B. Osgood, R. Phillips, and P. Sarnak; Compact isospectral sets of surfaces, J. Funct. Anal., 80 (1988), 212-234. MR 0960229 (90d:58160)
  • 85. K. Okikiolu; The Campbell-Hausdorff theorem for elliptic operators and a related trace formula, Duke Math. J., 79 (1995) 687-722. MR 1355181 (96j:58175)
  • 86. K. Okikiolu; Critical metrics for the determinant of the Laplacian in odd dimensions, Ann. of Math. (2), 153 (2001), no. 2, 471-531. MR 1829756 (2002j:58056)
  • 87. S. Patterson and P. Perry; The divisor of Selberg's zeta function for Kleinian groups, Duke Math. J., 106 (2001), 321-390. Appendix A by C. Epstein, An asymptotic volume formula for convex cocompact hyperbolic manifolds. MR 1813434 (2002a:11103)
  • 88. A. V. Pogorelev; The Dirichlet problem for the multidimensional analogue of the Monge-Ampère equation, Dokl. Acad. Nauk. SSSR, 201 (1971), 790-793. English translation, Soviet Math. Dokl., 12 (1971), 1227-1231. MR 0293228 (45:2305)
  • 89. S. Paneitz; A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, Preprint, 1983.
  • 90. A. Polyakov; Quantum geometry of bosonic strings, Phys. Lett. B, 103 (1981), 207-210. MR 0623209 (84h:81093a)
  • 91. J. Qing; On the rigidity for conformally compact Einstein manifolds, Inter. Math. Res. Notices, 21 (2003) 1141-1153, ArXiv: math.DG/0305084. MR 1962123 (2004a:53049)
  • 92. D. B. Ray and I. M. Singer; R-torsion and the Laplacian on Riemannian manifolds, Advances in Math., 7 (1971), 145-210. MR 0295381 (45:4447)
  • 93. R. Schoen; Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom., 20 (1984), 479-495. MR 0788292 (86i:58137)
  • 94. R. Schoen and D. Zhang; Prescribed scalar curvature on the n-sphere, Calc. of Vari., 4 (1996), 1-25. MR 1379191 (97j:58027)
  • 95. R. Schoen and S.-T. Yau; Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math., 92 (1988), 47-71. MR 0931204 (89c:58139)
  • 96. T.-L. Soong; Extremal functions for the Moser inequality on $S^2$ and $S^4$, Ph.D. Thesis, UCLA, 1991.
  • 97. G. Talenti; Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), 353-372. MR 0463908 (57:3846)
  • 98. N. Trudinger; On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. MR 0216286 (35:7121)
  • 99. N. Trudinger; Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuolo Norm. Sup. Pisa (3), 22 (1968), 265-274. MR 0240748 (39:2093)
  • 100. J. Viaclovsky; Conformal geometry, contact geometry and the calculus of variations, Duke Math. J., 101 (2000), no. 2, 283-316. MR 1738176 (2001b:53038)
  • 101. E. Witten; Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2 (1998), 253-290. MR 1633012 (99e:81204c)
  • 102. X.-W. Xu and P. Yang; On a fourth order equation in 3-D, ESAIM Control Optim. Calc. Var., 8 (2002), 1029-1042 (electronic). MR 1932985 (2003i:53051)
  • 103. H. Yamabe; On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12 (1960), 21-37. MR 0125546 (23:A2847)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 53A30, 58J05, 35J60

Retrieve articles in all journals with MSC (2000): 53A30, 58J05, 35J60


Additional Information

Sun-Yung Alice Chang
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
Email: chang@math.princeton.edu

DOI: https://doi.org/10.1090/S0273-0979-05-01058-X
Received by editor(s): June 30, 2004
Published electronically: April 13, 2005
Additional Notes: The research of Chang is supported in part by NSF Grant DMS-0245266
This paper is based on a Colloquium Lecture given at the Joint Mathematics Meetings in January 2004 in Phoenix, AZ
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society