Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

From atoms to crystals: a mathematical journey


Authors: Claude Le Bris and Pierre-Louis Lions
Journal: Bull. Amer. Math. Soc. 42 (2005), 291-363
MSC (2000): Primary 35Bxx, 35Jxx, 35Pxx, 49Kxx, 81Q05, 81Q10, 82Bxx
DOI: https://doi.org/10.1090/S0273-0979-05-01059-1
Published electronically: April 18, 2005
MathSciNet review: 2149087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an overview of some works on the models of computational quantum chemistry. We examine issues such as the existence of ground states (both for the electronic structure and the configuration of nuclei), the foundations of the models of the crystalline phase, and the macroscopic limits. We emphasize the connections between the physical modelling, the numerical concerns and the mathematical analysis of the problems.


References [Enhancements On Off] (What's this?)

  • 1. ALLEN, M.P. and D.J. TILDESLEY (1987) Computer simulation of liquids (Oxford Science Publications).
  • 2. ASHCROFT, N.W. and N. D. MERMIN (1976) Solid-State Physics (Saunders College Publishing).
  • 3. AUCHMUTY, G. and WENYAO JIA (1994) Convergent iterative methods for the Hartree eigenproblem, Math. Model. and Num. Anal. 28, pp. 575-610. MR 1295588 (95m:81230)
  • 4. BACH, V., E.H. LIEB, M. LOSS and J.P. SOLOVEJ (1994) There are no unfilled shells in unrestricted Hartree-Fock theory, Phys. Rev. Lett. 72, pp. 2981-2983.
  • 5. BACH, V. (1992) Error bound for the Hartree-Fock energy of atoms and molecules, Comm. Math. Phys. 147, pp. 527-548. MR 1175492 (94d:81242)
  • 6. BACSKAY, G.B. (1961) A quadratically convergent Hartree-Fock (QC-SCF) method. Application to closed shell systems, Chem. Phys. 61, pp. 385-404.
  • 7. BALÀZS, N. (1967) Formation of stable molecules within statistical theory of atoms, Phys. Rev., vol. 156, pp. 42-47.
  • 8. BALIAN, R. (1991) From microphysics to macrophysics: Methods and applications of statistical physics, in 2 volumes, Springer. MR 1129462 (92g:82001)
  • 9. BARDOS, C., F. GOLSE, A. GOTTLIEB, N. MAUSER (2003) Mean-field dynamics of fermions and the time-dependent Hartree-Fock equation, JMPA 82, 6, pp. 665-683. MR 1996777 (2004f:82051)
  • 10. BANDRAUK, A., M. DELFOUR and C. LE BRIS, eds. (2004) Quantum control: mathematical and numerical challenges, American Mathematical Society, CRM proceedings, vol. 33. MR 2043517 (2004j:00023)
  • 11. BAUDOUIN, L., O. KAVIAN, J.-P. PUEL (2003) Régularité dans une équation de Schrödinger avec potentiel singulier à distance finie et à l'infini (Regularity in a Schrödinger equation with a potential singular at finite distance and at infinity), Comptes Rendus Mathématique, vol. 337, 11, pp. 705-710. MR 2030406 (2004k:35308)
  • 12. BAUDOUIN, L., O. KAVIAN, J.-P. PUEL (2005) Regularity for a Schrödinger equation with a potential singular at finite distance and at infinity and application to a bilinear optimal control problem, to appear.
  • 13. BAUDOUIN, L., J.-P. PUEL (2005), in preparation.
  • 14. BENGURIA, R., H. BRÉZIS and E.H. LIEB (1981) The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79, pp. 167-180. MR 0612246 (83m:81114)
  • 15. BENGURIA, R. and E.H. LIEB (1985) The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules, J. Phys. B 18, pp. 1045-1059. MR 0786999 (86h:81138)
  • 16. BENGURIA, R. and C. YARUR (1990) Sharp condition on the decay of the potential for the absence of a zero-energy ground state of the Schrödinger equation, J. Phys. A 23, pp. 1513-1518. MR 1048781 (91d:81020)
  • 17. BENILAN, Ph., H. BRÉZIS and M. CRANDALL (1975) A semilinear equation in $L^1({\rm I\hspace{-0.50ex}R} ^N)$, Ann. Scuola. Norm. Pisa 2, pp. 523-555. MR 0390473 (52:11299)
  • 18. BENILAN, Ph., J.A. GOLDSTEIN and G.R. RIEDER (1991) The Fermi-Amaldi correction in spin polarized Thomas-Fermi theory, in: C. Bennewitz, ed., Differential equations and mathematical physics (Academic Press), pp. 25-37. MR 1126688 (92m:81309)
  • 19. BENILAN, Ph., J.A. GOLDSTEIN and G.R. RIEDER (1992) A nonlinear elliptic system arising in electron density theory, Comm. Part. Diff. Equ. 17, pp. 2079-2092. MR 1194750 (93i:35048)
  • 20. BLANC, X. (2000) A mathematical insight into ab initio simulations of solid phase, in: M. Defranceschi, C. Le Bris, eds., Mathematical Models and Methods for Ab Initio Quantum Chemistry, Lecture Notes in Chemistry 74 (Springer), pp. 133-158. MR 1855578
  • 21. BLANC, X. (2001) Geometry optimization for crystals in Thomas-Fermi type theories of solids, Comm. P.D.E. 26, 3-4, pp. 651-696. MR 1842045 (2002f:82035)
  • 22. BLANC, X. and C. LE BRIS (1999) Optimisation de géométrie dans le cadre des théories de and type Thomas-Fermi pour les cristaux périodiques, Note aux Comptes Rendus de l'Académie des Sciences, t. 329, Série 1, pp. 551-556. MR 1715124 (2000g:82029)
  • 23. BLANC, X. and C. LE BRIS (2005), Définition d'energies d'interface à partir de modèles atomiques, C. R. Acad. Sci., Série I, in press.
  • 24. BLANC, X. and C. LE BRIS (2000) Thomas-Fermi type theories for polymers and thin films, Advances in Differential Equations 5 (7-9), pp. 977-1032. MR 1776347 (2001h:35153)
  • 25. BLANC, X. and C. LE BRIS (2002) Periodicity of the infinite-volume ground state of a one-dimensional quantum model, Nonlinear Analysis, Theory, Methods, and Applications 48 (6), pp. 791-803. MR 1879075 (2003c:82088)
  • 26. BLANC, X., C. LE BRIS and P.-L. LIONS (2002) From molecular models to continuum mechanics, Archives for Rational Mechanics and Analysis, volume 164, pp. 341-381. MR 1933632 (2003i:74004)
  • 27. BLANC, X., C. LE BRIS and P.-L. LIONS (2003) A definition of the ground state energy for systems composed of infinitely many particles, Communications in P.D.E, Vol. 28, nos. 1-2, pp. 439-475. MR 1974463 (2004g:81073)
  • 28. BLANC, X., C. LE BRIS and P.-L. LIONS (2005) On the energy of microscopic infinite stochastic lattices and their macroscopic limits, in preparation.
  • 29. BLANC, X., C. LE BRIS and P.-L. LIONS (2001) Convergence de modèles moléculaires vers des modèles de mécanique des milieux continus, Note aux Comptes Rendus de l'Académie des Sciences, t. 332, Série 1, pp. 949-956. MR 1838776 (2002a:74034)
  • 30. BLANC, X., C. LE BRIS and P.-L. LIONS (2002) Caractérisation des fonctions de ${\bf R}^3$ à potentiel newtonien borné, Note aux Comptes Rendus de l'Académie des Sciences, t. 334, Série 1, pp. 15-21. MR 1888656 (2002m:35038)
  • 31. BLANCHARD, Ph. and E. BRÜNING (1992) Variational methods in mathematical physics (Springer). MR 1230382 (95b:58049)
  • 32. BLANCHARD, Ph. and E. BRÜNING (2002) Mathematical methods in physics. Distributions, Hilbert space operators, and variational methods, Progress in Mathematical Physics 26, Birkhäuser. MR 1936762 (2004c:46001)
  • 33. BOKANOWSKI, O.M. and B. GREBERT (1996a) A decomposition theorem for wave functions in molecular quantum chemistry, Math. Mod. and Meth. in App. Sci. 6, pp. 437-466. MR 1395812 (97d:81216)
  • 34. BOKANOWSKI, O.M. and B. GREBERT (1996b) Deformations of density functions in molecular quantum chemistry, J. Math. Phys. 37, pp. 1553-1557. MR 1380859 (97j:81399)
  • 35. BOKANOWSKI, O.M. and B. GREBERT (1998) Utilization of deformations in molecular quantum chemistry and application to density functional theory, Int. J. Quant. Chem. 68, pp. 221-231.
  • 36. BORNEMANN, F.A., P. NETTERSHEIM and Ch. SCHÜTTE (1996) Quantum-classical molecular dynamics as an approximation to full quantum dynamics, J. Chem. Phys. 105, pp. 1074-1083.
  • 37. BORNEMANN, F.A. and Ch. SCHÜTTE (1998) A mathematical investigation of the Car-Parrinello method, Numer. Math. 78, pp. 359-376. MR 1603342 (99d:81183)
  • 38. BORNEMANN, F.A. (1998) Homogenization in time of singularly perturbed mechanical systems, Lectures Notes in Mathematics 1697, Springer. MR 1637077 (99g:34105)
  • 39. BOWLER, D. et al. (1997) A comparison of linear scaling tight-binding methods, Model. Simul. Mater. Sci. Eng. 5, pp. 199-202.
  • 40. BOWLER, D. and M. GILLAN (1999) Density matrices in $O(N)$ electronic structure calculations, Comp. Phys. Comm. 120, pp. 95-108.
  • 41. BOYS, S.F. (1950) Electronic wavefunctions. I. A general method of calculation for the stationary states of any molecular system, Proc. Roy. Soc. London Ser. A 200, pp. 542-554.
  • 42. BRAIDES, A. and M.S. GELLI (2000) From Discrete to Continuum: A Variational Approach, Lecture Notes SISSA, Trieste.
  • 43. BRAIDES, A. (2001) From discrete to continuous variational problems: an introduction, Lecture Notes School on Homogenization Techniques and Asymptotic Methods for Problems with Multiple Scales, Torino.
  • 44. BRAIDES, A. (2000) Non-local variational limits of discrete systems, Comm. Contemporary Math. 2, pp. 285-297. MR 1759792 (2001h:49021)
  • 45. BRAIDES, A. and M.S. GELLI (2002) Limits of discrete systems with long-range interactions, J. Convex Anal. 9, no. 2, pp. 363-399. MR 1970562 (2004c:49026)
  • 46. BRAIDES, A. and M.S. GELLI (2002) Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids 7, no. 1, pp. 41-66. MR 1900933 (2003c:49014)
  • 47. BRÉZIS, H. (1984) Semilinear equations in ${\rm I\hspace{-0.50ex}R} ^n$without condition at infinity, App. Math. & Opt. 12, pp. 271-282. MR 0768633 (86f:35076)
  • 48. CANCÈS, E., M. DEFRANCESCHI, W. KUTZELNIGG, C. LE BRIS and Y. MADAY (2003) Computational Quantum Chemistry: A Primer, in Handbook of Numerical Analysis, Special Volume, Computational Chemistry, volume X, North-Holland. MR 2008386
  • 49. CANCÈS, E. (2001a) SCF algorithms for Kohn-Sham models with fractional occupation numbers, J. Chem. Phys. 114, pp. 10616-10623.
  • 50. CANCÈS, E. (2001b) SCF algorithms for Hartree-Fock electronic calculations, in: M. Defranceschi and C. Le Bris, eds., Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chemistry 74 (Springer), pp. 17-43.
  • 51. CANCÈS, E. and C. LE BRIS (1998) On the perturbation methods for some nonlinear Quantum Chemistry models, Math. Mod. and Meth. in App. Sci. 8, pp. 55-94. MR 1612003 (99b:81284)
  • 52. CANCÈS, E. and C. LE BRIS (1999) On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics, Math. Mod. and Meth. in App. Sci. 9, pp. 963-990. MR 1710271 (2000j:81297)
  • 53. CANCÈS, E. and C. LE BRIS (2000a) On the convergence of SCF algorithms for the Hartree-Fock equations, Math. Model. Num. Anal. 34, pp. 749-774. MR 1784484 (2001k:65178)
  • 54. CANCÈS, E. and C. LE BRIS (2000b) Can we outperform the DIIS approach for electronic structure calculations, Int. J. Quantum Chem. 79, pp. 82-90.
  • 55. CANCÈS, E., C. LE BRIS and M. PILOT (2000) Contrôle optimal bilinéaire d'une équation de Schrödinger, Note aux Comptes Rendus de l'Académie des Sciences, Série I 330, pp. 567-571. MR 1760440 (2001b:49030)
  • 56. CANCÈS, E., C. LE BRIS, B. MENNUCCI and J. TOMASI (1999) Integral equation methods for molecular scale calculations in the liquid phase, Math. Mod. and Meth. in App. Sci. 9, pp. 35-44. MR 1671531 (99j:92030)
  • 57. CANCÈS, E., B. JOURDAIN and T. LELIÈVRE (2005), Quantum Monte-Carlo simulations of fermions: a mathematical analysis of the fixed-node approximation, submitted to Math. Models Methods Appl. Sci.
  • 58. CAR, R. and M. PARRINELLO (1985) Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett. 55, pp. 2471-2474.
  • 59. CARTER, E. and A. WANG (2000) Orbital-Free Kinetic Energy Density Functional Theory, in Theoretical Methods in Condensed Phase Chemistry, S. D. Schwartz, ed., Progress in Theoretical Chemistry and Physics, Kluwer, pp. 117-184.
  • 60. CATTO, I. and E. PATUREL, in preparation.
  • 61. CATTO, I., C. LE BRIS and P.-L. LIONS (1998) Mathematical theory of thermodynamic limits: Thomas-Fermi type models (Oxford University Press). MR 1673212 (2000e:81002)
  • 62. CATTO, I., C. LE BRIS and P.-L. LIONS (2001) On the thermodynamic limit for Hartree-Fock type models, Annales de l'Institut Henri Poincaré, Analyse non linéaire 18, pp. 687-760. MR 1860952 (2003e:81044a)
  • 63. CATTO, I., C. LE BRIS and P.-L. LIONS (2002) On some periodic Hartree-type models for crystals, Annales de l'Institut Henri Poincaré, Analyse non linéaire 19, pp. 143-190. MR 1902742 (2003e:81044b)
  • 64. CATTO, I., C. LE BRIS and P.-L. LIONS (1996) Limite thermodynamique pour des modèles de type Thomas-Fermi, Note aux Comptes Rendus de l'Académie des Sciences, t. 322, Série 1, pp. 357-364. MR 1378513 (97b:81149)
  • 65. CATTO, I., C. LE BRIS and P.-L. LIONS (1998) Sur la limite thermodynamique pour des modèles de type Hartree et Hartree-Fock, Note aux Comptes Rendus de l'Académie des Sciences, t. 327, Série 1, pp. 259-266. MR 1650265 (99j:81208)
  • 66. CATTO, I. and P.-L. LIONS (1992) Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Part I: A necessary and sufficient condition for the stability of general molecular systems, Comm. Part. Diff. Equ. 17, pp. 1051-1110. MR 1179279 (94b:81150a)
  • 67. CATTO, I. and P.-L. LIONS (1993a) Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Part 2: Stability is equivalent to the binding of neutral subsystems, Comm. Part. Diff. Equ. 17, pp. 305-354. MR 1211736 (94b:81150b)
  • 68. CATTO, I. and P.-L. LIONS (1993b) Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Part 3: Binding of neutral subsystems, Comm. Part. Diff. Equ. 18, pp. 381-429. MR 1214866 (94b:81150c)
  • 69. CATTO, I. and P.-L. LIONS (1993c) Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Part 4: Binding of neutral systems for the Hartree model, Comm. Part. Diff. Equ. 18, pp. 1149-1159. MR 1233188 (94g:81227)
  • 70. CHADAM, J.M. and R.T. GLASSEY (1975) Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys. 16, pp. 1122-1130. MR 0413843 (54:1957)
  • 71. CHAN, G. K. L. et al. (2001) Thomas-Fermi-Dirac-von Weizsäcker models in finite systems, J. Chem. Phys., vol. 114, 2, pp. 631-638.
  • 72. CHALLACOMBE, M. (2000) Linear scaling computation of the Fock matrix. V. Hierarchical cubature for numerical integration of the exchange-correlation matrix, J. Chem. Phys. 113, pp. 10037-10043.
  • 73. COLEMAN, A. J. and V.I. YUKALOV (2000) Reduced density matrices, Lecture Notes in Chemistry 72 (Springer). MR 1757452 (2001k:81376)
  • 74. CYCON, H.L., R.G. FROESE, W. KIRSCH and B. SIMON (1987) Schrödinger operators with applications to quantum mechanics and global geometry (Springer, New York). MR 0883643 (88g:35003)
  • 75. DAL MASO, G. (1993) An introduction to Gamma-convergence, Progress in Nonlinear Differential Equations and their Applications 8, Birkhäuser Boston. MR 1201152 (94a:49001)
  • 76. DANIELS, A. and G. SCUSERIA (1999) What is the best alternative to diagonalization of the hamiltonian in large scale semiempirical calculations?, J. Chem. Phys. 110, pp. 1321-1328.
  • 77. DATTA, S.N. and G. DEVIAH (1988) The minimax technique in relativistic Hartree-Fock calculations, Pramana 30, 5, pp. 393-416.
  • 78. DEÁK, P., Th. FRAUENHEIM and M. R. PEDERSON, eds. (2000) Computer simulation of materials at atomic level, Wiley, 2000.
  • 79. DEFRANCESCHI, M. and P. FISCHER (1998) Numerical solution of the Schrödinger equation in a wavelet basis for hydrogen-like atoms, SIAM J. Num. Anal. 35, pp. 1-12. MR 1618416
  • 80. DEFRANCESCHI, M. and C. LE BRIS (1997) Computing a molecule: a mathematical viewpoint, J. Math. Chem. 21, pp. 1-30. MR 1478056
  • 81. DEFRANCESCHI, M. and C. LE BRIS (1999) Computing a molecule in its environment: a mathematical viewpoint, Int. J. Quant. Chem. 71, pp. 257-250.
  • 82. DEFRANCESCHI, M. and C. LE BRIS, eds. (2001) Mathematical models and methods for ab initio quantum chemistry, Lecture Notes in Chemistry 74 (Springer). MR 1857459 (2003e:82002)
  • 83. DESCLAUX, J.P., J. DOLBEAULT, P. INDELICATO, M.J. ESTEBAN and E. S´ERÉ (2003) Computational approaches of relativistic models in quantum chemistry, Handbook of Numerical Analysis X (Special Volume on Computational Chemistry), P.G. Ciarlet and C. Le Bris, eds., Elsevier. MR 2008389
  • 84. DOLBEAULT, J., M.J. ESTEBAN, E. S´ERÉ and M. VANBREUGEL (2000) Minimization methods for the one-particle Dirac equation, Phys. Rev. Letters 85 (19), pp. 4020-4023.
  • 85. DOLBEAULT, J., M.J. ESTEBAN and E. S´ERÉ (2000) Variational characterization for eigenvalues of Dirac operators, Cal. Var. 10, pp. 321-347. MR 1767717 (2001f:49083)
  • 86. DOLBEAULT, J., M.J. ESTEBAN and E. S´ERÉ (2000) On the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal. 174, pp. 208-226. MR 1761368 (2001e:47040)
  • 87. DOLBEAULT, J., M.J. ESTEBAN and E. S´ERÉ (2000) Variational methods in relativistic quantum mechanics: new approach to the computation of Dirac eigenvalues, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, Lecture Notes in Chemistry, C. Le Bris and M. Defranceschi, eds., Springer, Berlin-Heidelberg. MR 1855581
  • 88. DOLBEAULT, J., M.J. ESTEBAN and E. S´ERÉ (2003) A variational method for relativistic computations in atomic and molecular physics, Int. J. Quantum. Chemistry 93, pp. 149-155.
  • 89. DOLBEAULT, J., M.J. ESTEBAN, M. LOSS and L. VEGA (2004) An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal. 216, pp. 1-21. MR 2091354
  • 90. DOVESI R., R. ORLANDO, C. ROETTI, C. PISANI and V.R. SAUNDERS (2000) The periodic Hartree-Fock method and its implementation in the crystal code, Phys. Stat. Sol. (b) 217, pp. 63-88.
  • 91. DREIZLER, R.M. and E.K.U. GROSS (1990) Density functional theory (Springer).
  • 92. ESTEBAN, M.J. and E. S´ERÉ (1995) Stationary states of the nonlinear Dirac equation, Comm. Math. Phys., vol. 171 (1995), pp. 323-350. MR 1344729 (96g:81041)
  • 93. ESTEBAN, M.J. and E. S´ERÉ (1994) Existence de solutions stationnaires pour l'équation de Dirac non linéaire et le système de Dirac-Poisson, C.R.A.S. 319, série I, pp. 1213-1218. MR 1309103 (96b:81027)
  • 94. ESTEBAN, M.J., V. GEORGIEV and E. S´ERÉ (1996) Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Cal. Var. 4, pp. 265-281. MR 1386737 (97g:35144)
  • 95. ESTEBAN, M.J. and E. S´ERÉ (1997) Existence and multiplicity of solutions for linear and nonlinear Dirac problems, in Partial Differential Equations and Their Applications. P. C. Greiner, V. Ivrii, L. A. Seco and C. Sulem, eds., AMS. MR 1479240 (98h:35200)
  • 96. ESTEBAN, M.J., V. GEORGIEV and E. S´ERÉ (1996) Bound-State Solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac Systems, Lett. Math Phys. 38, pp. 217-220. MR 1403074 (97e:81018)
  • 97. ESTEBAN, M.J. and E. S´ERÉ (1999) Solutions of the Dirac-Fock equations for atoms and molecules, Comm. Math. Phys. 203, pp. 499-530. MR 1700174 (2000j:81057)
  • 98. ESTEBAN, M.J. and E. S´ERÉ (2002) An overview on linear and nonlinear Dirac equations, Discrete and Continuous Dynamical Systems 8 (2), pp. 381-397. MR 1897689 (2003d:35219)
  • 99. ESTEBAN, M.J. and E. S´ERÉ (1998) Les équations de Dirac-Fock, Séminaire E.D.P., École Polytechnique, 1997-1998. MR 1660518
  • 100. ESTEBAN, M.J. and E. S´ERÉ (2001) Nonrelativistic limit of the Dirac-Fock equations, Ann. H. Poincaré 2, pp. 941-961. MR 1869528 (2003d:81066)
  • 101. ESTEBAN, M.J. and E. S´ERÉ (2002) On some linear and nonlinear eigenvalue problems in relativistic quantum chemistry, Progr. Nonlinear Differential Equations (in A. Marino's honor), Birkhäuser. MR 1879732 (2002j:81060)
  • 102. ESTEBAN, M.J. and E. S´ERÉ (2002) A max-min principle for the ground state of the Dirac-Fock functional, Contemp. Math. 307, pp. 135-141. MR 1946024 (2003k:81052)
  • 103. ESTEBAN, M.J. and E. S´ERÉ, Dirac-Fock models for atoms and molecules and related topics. Proceedings ICMP2003.
  • 104. FEFFERMAN, Ch. (1985) The atomic and molecular nature of matter, Rev. Mat. Iberoamericana 1, pp. 1-44. MR 0834355 (88g:82011)
  • 105. FEFFERMAN, Ch. (1986) The N-body problem in quantum mechanics, Commun. Pure Appl. Math. 39, Suppl., S67-S109. MR 0861484 (88e:81171a)
  • 106. FEFFERMAN, Ch. and L.A. SECO (1990) On the energy of a large atom, Bull. A.M.S. 23, 2, pp. 525-530. MR 1056556 (92a:81230)
  • 107. FEFFERMAN, Ch. and L.A. SECO (1994) On the Dirac and Schwinger corrections to the ground-state energy of an atom, Adv. Math. 107, 1, pp. 1-185. MR 1283205 (95e:81262)
  • 108. FEFFERMAN, Ch. and L.A. SECO (1995) The mathematics of large atoms, J. Equations Dérivées Partielles, St. Jean de Monts. MR 1360480
  • 109. FISCHER, P. and M. DEFRANCESCHI (1994) The wavelet transform: a new mathematical tool for Quantum Chemistry, in: E.S. Kryachko and J.L. Calais, eds., Conceptual Trends in Quantum Chemistry (Kluwer), pp. 227-247.
  • 110. FOURNAIS, S., M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF and T. SORENSEN (2004) Analyticity of the density of electronic wavefunctions, Ark. Mat. 42, no. 1, pp. 87-106. MR 2056546
  • 111. FOURNAIS, S., M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF and T. SORENSEN (2002) On the regularity of the density of electronic wavefunctions. Mathematical results in quantum mechanics (Taxco, 2001), pp. 143-148, Contemp. Math. 307, Amer. Math. Soc., Providence, RI. MR 1946025 (2003j:81256)
  • 112. FOURNAIS, S., M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF and T. SORENSEN (2002) The electron density is smooth away from the nuclei, Comm. Math. Phys. 228, no. 3, pp. 401-415. MR 1918782 (2003f:81287)
  • 113. FRENKEL, D. and B. SMIT (1996) Understanding molecular simulation (Academic Press).
  • 114. FRIESECKE, G. (2003) The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions, Arch. Rat. Mech. Analysis. 169, pp. 35-71. MR 1996268 (2004g:81315)
  • 115. FRIESECKE, G. and R. D. JAMES (2000) A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids 48, nos. 6-7, pp. 1519-1540. MR 1766412 (2001c:74007)
  • 116. FRIESECKE, G. and F. THEIL (2002) Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci. 12, no. 5, pp. 445-478. MR 1923388 (2004b:74006)
  • 117. GALLI, G. (2000) Large scale electronic structure calculations using linear scaling methods, Phys. Stat. Sol (b) 217, pp. 231-249.
  • 118. GARDNER, C. S. and C. RADIN (1979) The infinite-volume ground state of the Lennard-Jones potential, J. Stat. Phys., vol. 20, 6, pp. 719-724. MR 0537267 (82b:82062)
  • 119. GOEDECKER, S. (1999) Linear scaling electronic structure methods, Reviews of Modern Physics 71, pp. 1085-1123.
  • 120. GOGNY, D. and P.-L. LIONS (1986) Hartree-Fock theory in nuclear physics RAIRO, Modélisation Math. Anal. Numer. 20, pp. 571-637. MR 0877058 (88c:81137)
  • 121. GOLDSTEIN, J. A. and G.R. RIEDER (1991) Thomas-Fermi theory with an external magnetic field, J. Math. Phys. 32, pp. 2907-2917. MR 1130565 (92k:81238)
  • 122. GOLDSTEIN, J. A., G.R. GOLDSTEIN and WENYIAO JIA (1995) Thomas-Fermi theory with magnetic fields and the Fermi-Amaldi correction, Diff. Int. Equ. 8, pp. 1305-1316. MR 1329842 (96g:81288)
  • 123. GUSTAFSON, S.J. and I.M. SIGAL (2003) Mathematical concepts of quantum mechanics, Universitext, Springer. MR 2002159 (2004g:81002)
  • 124. HAGEDORN, G.A. (1996) Crossing the Interface between Chemistry and Mathematics, Notices of the AMS 43, pp. 297-299. MR 1375215
  • 125. HAGEDORN, G.A. (1980) A time-dependent Born-Oppenheimer approximation, Commun. Math. Phys. 77, pp. 1-19. MR 0588684 (82a:81040)
  • 126. HEHRE, W.J., L. RADOM, P.v.R. SCHLEYER, and J.A. POPLE (1986) Ab initio molecular orbital theory (Wiley).
  • 127. HOFFMANN-OSTENHOF, M., T. HOFFMANN-OSTENHOF and T. SORENSEN (2001) Electron wavefunctions and densities for atoms, Ann. Henri Poincaré 2, no. 1, pp. 77-100. MR 1823834 (2003c:81231)
  • 128. HUNZIKER, W. and I.M. SIGAL (2000) The quantum $N$-body problem, J. Math. Phys., vol. 41, pp. 3348-3510. MR 1768629 (2001g:81267)
  • 129.ORIO, R. J., Jr. and R.D. MARCHESIN (1984) On the Schrödinger equation with time-dependent electric fields, Proc. Royal Soc. Edinburgh 96, pp. 117-134. MR 0741652 (85k:35179)
  • 130. JAY, L.O., H. KIM, Y. SAAD and J.R. CHELIKOWSKI (1999) Electronic structure calculations for plane wave codes without diagonalization, Comp. Phys. Comm. 118, pp. 21-30.
  • 131. JONES, R.O. and O. GUNNARSSON (1989) The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61, pp. 689-746.
  • 132. KATO, T. (1957) On the eigenfunctions of many-particle systems in quantum mechanics, Comm. Pure Appl. Math. 10, pp. 151-177. MR 0088318 (19,501a)
  • 133. KATO, T. (1980) Perturbation theory for linear operators (Springer). MR 1335452 (96a:47025)
  • 134. KITTEL, Ch. (1996) Introduction to Solid State Physics, 7th Ed., Wiley.
  • 135. KLAHN, B. and W.A. BINGEL (1977) The convergence of the Rayleigh-Ritz method in Quantum Chemistry, Theor. Chim. Acta 44, pp. 26-43.
  • 136. KOHN, W. (1999) Nobel Lecture: Electronic structure of matter-wave functions and density functionals, Rev. Mod. Phys. 71, pp. 1253-1266.
  • 137. KOUTECKÝ, J. and V. BONACIC (1971) On convergence difficulties in the iterative Hartree-Fock procedure, J. Chem. Phys. 55, pp. 2408-2413.
  • 138. KUDIN, K. and G.E. SCUSERIA (1998) A fast multipole algorithm for the efficient treatment of the Coulomb problem in electronic structure calculations of periodic systems with Gaussian orbitals, Chem. Phys. Lett. 289, pp. 611-616.
  • 139. KUDIN, K., G.E. SCUSERIA and E. CANCÈS (2002) A black-box self-consistent field convergence algorithm: one step closer, J. Chem. Phys. 116, pp. 8255-8261.
  • 140. LE BRIS, C. (1993) Quelques problèmes mathématiques en chimie quantique moléculaire, Ph.D. thesis, École Polytechnique.
  • 141. LE BRIS, C. (2003) Guest Editor, Handbook of Numerical Analysis, Special Volume, Computational Chemistry, volume X, North-Holland. MR 2008385 (2005c:81001)
  • 142. LE BRIS, C. (1993b) Some results on the Thomas-Fermi-Dirac-von Weizsäcker model, Diff. Int. Equ. 6, pp. 337-353. MR 1195387 (94a:81147)
  • 143. LE BRIS, C. (1994) A general approach for multiconfiguration methods in quantum molecular chemistry, Ann. Inst. Henri Poincaré Anal. non linéaire 11, pp. 441-484. MR 1287241 (95m:81231)
  • 144. LE BRIS, C. (1995) On the spin polarized Thomas-Fermi model with the Fermi-Amaldi correction, Nonlinear Analysis, Theory, Methods and Applications 25, pp. 669-679. MR 1341520 (96k:81298)
  • 145. LE BRIS, C., Y. MADAY and G. TURINICI (2004) Towards efficient numerical strategies for quantum control, in Quantum control: Mathematical and numerical challenges, American Mathematical Society, CRM proceedings series. MR 2043517 (2004j:00023)
  • 146. LE BRIS, C. (2005) Computational chemistry from the perspective of numerical analysis, to appear in Acta Numerica.
  • 147. LESTER, W.A., Jr. (1997-2002) Recent advances in quantum Monte Carlo methods, 2 volumes, World Scientific.
  • 148. LEVINE, I.N. (1991) Quantum Chemistry (Prentice Hall).
  • 149. LEWIN, M. (2002) The multiconfiguration methods in Quantum Chemistry: Palais-Smale condition and existence of minimizers, C. R. Acad. Sc. Paris Ser. I 334, pp. 299-304. MR 1891007 (2002m:81271)
  • 150. LEWIN, M. (2004) Solutions of the Multiconfiguration Equations in Quantum Chemistry, Arch. Rat. Mech. Anal., vol. 171, 1, pp. 83-114. MR 2029532
  • 151. LIEB, E.H. (1984) Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A 29, pp. 3018-3028.
  • 152. LIEB, E.H. (1989) Kinetic energy bounds and their applications to the stability of matter, in Schrödinger operators, H. Holden and A. Jensen, eds., Lecture Notes in Physics, vol. 345, pp. 371-382. MR 1037324 (91a:82045)
  • 153. LIEB, E.H. (1990) The stability of matter: from atoms to stars, Bull. A.M.S. 22, pp. 1-49. MR 1014510 (91f:81002)
  • 154. LIEB, E.H. (1985) Density functionals for Coulomb systems, in: R.M. Dreizler and J. da Providencia, eds., Density Functional Methods in Physics (Plenum, New York), pp. 31-80.
  • 155. LIEB, E.H. and B. SIMON (1977) The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys. 53, pp. 185-194. MR 0452286 (56:10566)
  • 156. LIEB, E.H. and B. SIMON (1977) The Thomas-Fermi theory of atoms, molecules and solids, Advances in Mathematics 23, pp. 22-116. MR 0428944 (55:1964)
  • 157. LIEB, E.H. (1979) A lower bound for Coulomb energies, Physics Lett., vol. 70A, pp. 444-446. MR 0588128 (83g:82008)
  • 158. LIEB, E.H. and S. OXFORD (1981) Improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem., vol. 19, pp. 427-439.
  • 159. LIEB, E.H. (1981) Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 53, pp. 603-641. MR 0629207 (83a:81080a)
  • 160. LIEB, E.H. (1983) Density functionals for Coulomb systems, Int. J. Quantum Chem. 24, pp. 243-277.
  • 161. LIEB, E.H. (1984) Bound of the maximum negative ionization of atoms and molecules, Phys. Rev. A 29, pp. 3018-3028.
  • 162. LIEB, E.H. and W. THIRRING (1976) Inequalities for the moment of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, in Studies in Mathematical Physics, E.H. Lieb, B. Simon and A. Wightman, eds., Princeton Univ. Press, pp. 269-303.
  • 163. LIEB, E.H. and W. THIRRING (1986) Universal nature of van der Waals forces for Coulomb systems, Phys. Rev. A 34, pp. 40-46.
  • 164. LIONS, P.-L. (1985) Hartree-Fock and related equations, in Nonlinear partial differential equations and their applications, Lect. Coll. de France Semin., Vol. IX, Pitman Res. Notes Math. Ser. 181, pp. 304-333. MR 0992653 (90i:35251)
  • 165. LIONS, P.-L. and A. MAJDA (2000) Equilibrium statistical theory for nearly parallel vortex filaments, Commun. Pure Appl. Math. 53, no. 1, pp. 76-142. MR 1715529 (2000h:76086)
  • 166. LIONS, P.-L. (1987) Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109, pp. 33-97. MR 0879032 (88e:35170)
  • 167. LIONS, P.-L. (1985) The concentration-compactness principle in the calculus of variations. The limit case. I, II, Rev. Mat. Iberoam. 1, No. 1, pp. 145-201 and No. 2, pp. 45-121. MR 0834360 (87c:49007), MR 0850686 (87j:49012)
  • 168. LIONS, P.-L. (1984) The concentration-compactness principle in the calculus of variations. The locally compact case. I and II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, pp. 109-145 and pp. 223-283. MR 0778970 (87e:49035a), MR 0778974 (87e:49035b)
  • 169. LIONS, P.-L. (1996) Remarks on mathematical modelling in quantum chemistry, Computational Methods in Applied Sciences, Wiley, pp. 22-23.
  • 170. LIU, W.K. et al., eds. (2004) Special issue on multiple scale methods for nanoscale mechanics and materials, Comp. Math. Appl. Mech. Eng. 193, vols. 17-20. MR 2069426
  • 171. MCWEENY, R. (1992) Methods of molecular quantum mechanics, 2nd edition (Academic Press).
  • 172. MADAY, Y. and G. TURINICI (2003) Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations, Numer. Math. 94, no. 4, pp. 739-770. MR 1990591 (2005c:81050)
  • 173. MARCH, N.H. (1992) Electron density theory of atoms and molecules (Academic Press).
  • 174. NIJBOER, B.R.A, and W.J. VENTEVOGEL (1979) On the configuration of systems of interacting particles with minimum potential energy per particle, Physica, vol. 98A, pp. 274-288. MR 0546896 (80i:81080)
  • 175. NIJBOER, B.R.A, and W.J. VENTEVOGEL (1979) On the configuration of systems of interacting particles with minimum potential energy per particle, Physica, vol. 99A, pp. 569-580. MR 0552855 (83e:81102)
  • 176. ORDEJON, P., D.A. DRABOLD and R.M. MARTIN (1995) Linear system-size scaling methods for electronic structure calculations, Phys. Rev. B 51, pp. 1456-1476.
  • 177. PAGANO, S. and R. PARONI (2003) A simple model for phase transitions: from the discrete to the continuum problem, Quart. Appl. Math. 61, no. 1, pp. 89-109. MR 1955225 (2003k:74053)
  • 178. PARR, R. G. and W. YANG (1989) Density functional theory of atoms and molecules (Oxford University Press).
  • 179. PATUREL, E. (2000) Solutions of the Dirac-Fock equations without projector, Ann. Henri Poincaré 1, no. 6, pp. 1123-1157. MR 1809795 (2001k:81369)
  • 180. PAYNE, P. W. (1979) Density functionals in unrestricted Hartree-Fock theory, J. Chem. Phys. 71, pp. 490-496.
  • 181. PISANI, C., ed. (1996) Quantum mechanical ab initio calculation of the properties of crystalline materials, Lecture Notes in Chemistry 67, Springer.
  • 182. PULAY, P. (1982) Improved SCF convergence acceleration, J. Comp. Chem. 3, pp. 556-560.
  • 183. RAABE, D. (1998) Computational materials science, Wiley.
  • 184. RADIN, C. (1981) Ground states for soft disks, J. Stat. Phys., vol. 26, pp. 365-373. MR 0643714 (83b:82011)
  • 185. REED, M. and B. SIMON (1975-1980) Methods of modern mathematical physics, in 4 volumes, Academic Press. MR 0493419 (58:12429a), MR 0493420 (58:12429b), MR 0529429 (80m:81085), MR 0493421 (58:12429c)
  • 186. SAUNDERS, V. R. and I.H. HILLIER (1973) A ``level-shifting" method for converging closed shell Hartree-Fock wavefunctions, Int. J. Quantum Chem. 7, pp. 699-705.
  • 187. SCHECHTER, M. (1981) Operator methods in quantum mechanics (North Holland). MR 0597895 (83b:81004)
  • 188. SCUSERIA, G.E. (1999) Linear scaling density functional calculations with Gaussian orbitals, J. Phys. Chem. A 103, pp. 4782-4790.
  • 189. SOLOVEJ, J.-P. (1990) Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules, Comm. Math. Phys. 129, pp. 561-598. MR 1051505 (91b:81191)
  • 190. SOLOVEJ, J.-P. (1991) Proof of the ionization conjecture in a reduced Hartree-Fock model, Invent. Math. 104, pp. 291-311. MR 1098611 (92f:81238)
  • 191. SOLOVEJ, J.-P. (1996) The size of atoms in Hartree-Fock theory, Lars Hörmander et al. (eds.), Partial differential equations and mathematical physics, The Danish-Swedish analysis seminar, 1995, Proceedings, Birkhäuser, Prog. Nonlinear Differ. Equ. Appl. 21, pp. 321-332. MR 1380999 (96k:81292)
  • 192. SPRUCH, L. (1991) Pedagogic notes on Thomas-Fermi theory (and on some improvements): atoms, stars and the stability of bulk matter, Rev. Mod. Phys. 63, pp. 151-209.
  • 193. STANTON, R.E. (1981) The existence and cure of intrinsic divergence in closed shell SCF calculations, J. Chem. Phys. 75, pp. 3426-3432.
  • 194. STANTON, R.E. (1981) Intrinsic convergence in closed-shell SCF calculations. A general criterion, J. Chem. Phys. 75, pp. 5416-5422.
  • 195. STARIKOV, E.B. (1993) On the convergence of the Hartree-Fock self-consistency procedure, Mol. Phys. 78, pp. 285-305. MR 1203047 (94a:81149)
  • 196. STRUWE, M. (1990) Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems (Springer). MR 1078018 (92b:49002)
  • 197. SWIRLESS, B. (1935) The relativistic self-consistent field, Proc. Roy. Soc. A 152, pp. 625-649.
  • 198. SWIRLESS, B. (1936) The relativistic interaction of two electrons in the self-consistent field method, Proc. Roy. Soc. A 157, pp. 680-696.
  • 199. SZABO, A. and N.S. OSTLUND (1982) Modern quantum chemistry: an introduction to advanced electronic structure theory (MacMillan).
  • 200. TALMAN, J.D. (1986) Minimax principle for the Dirac equation, Phys. Rev. Lett. 57, 9, pp. 1091-1094. MR 0854208 (87i:81039)
  • 201. THIRRING, W. (1983) A Course in Mathematical Physics, in 4 volumes (Springer). MR 0507189 (80d:70003), MR 0553112 (80e:78001b), MR 0625662 (84m:81006), MR 0681697 (84m:82004b)
  • 202. TURINICI, G., H. RABITZ and E. BROWN (2003) Control of Quantum Dynamics: Concepts, Procedures and Future Prospects in Handbook of Numerical Analysis, Special Volume, Computational Chemistry, volume X, North-Holland. MR 2008399
  • 203. VENTEVOGEL, W.J. (1978) On the configuration of a one-dimensional system of interacting particles with minimum potential energy per particle, Physica, vol. 92A, p. 343.
  • 204. YSERENTANT, H. (2004) On the electronic Schrödinger equation, preprint.
  • 205. YSERENTANT, H. (2004) On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives, Numer. Math. 98, pp. 731-759. MR 2099319
  • 206. YSERENTANT, H. (2004) Sparse grid spaces for the numerical solution of the electronic Schrödinger equation, Numer. Math., submitted.
  • 207. ZHISLIN, G.M. (1960) Discussion of the spectrum of Schrödinger operators for systems of many particles (Russian), Tr. Moskov. Mat. Obshch. 9, pp. 81-120.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 35Bxx, 35Jxx, 35Pxx, 49Kxx, 81Q05, 81Q10, 82Bxx

Retrieve articles in all journals with MSC (2000): 35Bxx, 35Jxx, 35Pxx, 49Kxx, 81Q05, 81Q10, 82Bxx


Additional Information

Claude Le Bris
Affiliation: CERMICS, École Nationale des Ponts et Chaussées, 6 & 8, avenue Blaise Pascal, 77455 Marne-La-Vallée, France
Email: lebris@cermics.enpc.fr

Pierre-Louis Lions
Affiliation: Collège de France, 11, place Marcelin Berthelot, 75231 Paris Cedex 05, France
Email: lions@dmi.ens.fr

DOI: https://doi.org/10.1090/S0273-0979-05-01059-1
Received by editor(s): November 20, 2004
Published electronically: April 18, 2005
Additional Notes: This article is an extended version by the two authors of notes based upon a series of lectures given by PLL at Collège de France during the fall semester of the academic year 2003/04.
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society