Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF
Book Information:

Authors: Robert Bryant, Phillip Griffiths and Daniel Grossman
Title: Exterior differential systems and Euler-Lagrange partial differential equations
Additional book information: University of Chicago Press, 2003, 216 pp., ISBN 0-226-07793-4, $45.00, cloth; ISBN 0-226-07794-2, $17.00, paper

References [Enhancements On Off] (What's this?)

  • 1. Anderson, I.M., The Variational Bicomplex, Technical Report, Utah State University, 1989.
  • 2. J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), no. 4, 325–388. MR 801585, 10.1007/BF00276295
  • 3. R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior differential systems, Mathematical Sciences Research Institute Publications, vol. 18, Springer-Verlag, New York, 1991. MR 1083148
  • 4. Carathéodory, C., Über die Variationsrechnung bei mehrfachen Integralen, Acta Sci. Mat. (Szeged), 4 (1929) 193-216.
  • 5. Élie Cartan, Œuvres complètes. Partie II, 2nd ed., Éditions du Centre National de la Recherche Scientifique (CNRS), Paris, 1984 (French). Algèbre, systèmes différentiels et problèmes d’équivalence. [Algebra, differential systems and problems of equivalence]. MR 753095
  • 6. Mark J. Gotay, An exterior differential systems approach to the Cartan form, Symplectic geometry and mathematical physics (Aix-en-Provence, 1990), Progr. Math., vol. 99, Birkhäuser Boston, Boston, MA, 1991, pp. 160–188. MR 1156539
  • 7. Phillip A. Griffiths, Exterior differential systems and the calculus of variations, Progress in Mathematics, vol. 25, Birkhäuser, Boston, Mass., 1983. MR 684663
  • 8. Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2002. Structure-preserving algorithms for ordinary differential equations. MR 1904823
  • 9. Martin Juráš and Ian M. Anderson, Generalized Laplace invariants and the method of Darboux, Duke Math. J. 89 (1997), no. 2, 351–375. MR 1460626, 10.1215/S0012-7094-97-08916-X
  • 10. H. A. Kastrup, Canonical theories of Lagrangian dynamical systems in physics, Phys. Rep. 101 (1983), no. 1-2, 167. MR 733784, 10.1016/0370-1573(83)90037-6
  • 11. Kosmann-Schwarzbach, Y., Les Théorèmes de Noether, Éditions de École Polytechnique, Palaiseau, France, 2004.
  • 12. Emmy Noether, Invariant variation problems, Transport Theory Statist. Phys. 1 (1971), no. 3, 186–207. Translated from the German (Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1918, 235–257). MR 0406752
  • 13. Peter J. Olver, Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1993. MR 1240056
  • 14. Peter J. Olver, Equivalence and the Cartan form, Acta Appl. Math. 31 (1993), no. 2, 99–136. MR 1223167, 10.1007/BF00990539
  • 15. Peter J. Olver, Moving frames—in geometry, algebra, computer vision, and numerical analysis, Foundations of computational mathematics (Oxford, 1999) London Math. Soc. Lecture Note Ser., vol. 284, Cambridge Univ. Press, Cambridge, 2001, pp. 267–297. MR 1839146
  • 16. Wolfgang Reichel, Uniqueness theorems for variational problems by the method of transformation groups, Lecture Notes in Mathematics, vol. 1841, Springer-Verlag, Berlin, 2004. MR 2068382
  • 17. Toru Tsujishita, On variation bicomplexes associated to differential equations, Osaka J. Math. 19 (1982), no. 2, 311–363. MR 667492
  • 18. A. M. Vinogradov, The \cal𝐶-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory, J. Math. Anal. Appl. 100 (1984), no. 1, 1–40. MR 739951, 10.1016/0022-247X(84)90071-4
    A. M. Vinogradov, The \cal𝐶-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory, J. Math. Anal. Appl. 100 (1984), no. 1, 41–129. MR 739952, 10.1016/0022-247X(84)90072-6
  • 19. Hermann Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. of Math. (2) 36 (1935), no. 3, 607–629. MR 1503239, 10.2307/1968645

Review Information:

Reviewer: Peter J. Olver
Affiliation: University of Minnesota
Journal: Bull. Amer. Math. Soc. 42 (2005), 407-412
Published electronically: April 1, 2005
Review copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.