Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Udo Hertrich-Jeromin
Title: Introduction to Möbius differential geometry
Additional book information: London Mathematical Society Lecture Notes Series, vol. 300, Cambridge University Press, Cambridge, UK, 2003, xi+413 pp., ISBN 0-521-53569-7, US$50.00

References [Enhancements On Off] (What's this?)

  • 1. M. A. Akivis and V. V. Goldberg, Conformal differential geometry and its generalizations, Wiley, New York, 1996. MR 1406793 (98a:53023)
  • 2. W. Blaschke, Vorlesungen über Differentialgeometrie III: Differentialgeometrie der Kreise und Kugeln, Grundlehren XXIX, Springer, Berlin, 1929.
  • 3. R. L. Bryant, A duality theorem for Willmore surfaces, J. Differential Geometry 20 (1984), 23-53. MR 0772125 (86j:58029)
  • 4. T. E. Cecil, Lie sphere geometry, Springer, New York, 1992. MR 1219311 (94m:53076)
  • 5. D. Ferus, K. Leschke, F. Pedit and U. Pinkall, Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates, and energy estimates of harmonic 2-tori, Invent. Math. 146 (2001), 507-593. MR 1869849 (2003a:53057)
  • 6. G. Fubini, Applicabilità projettiva di due superficie, Palermo Rend. 41 (1916), 135-162.
  • 7. U. Hertrich-Jeromin and U. Pinkall, Ein Beweis der Willmoreschen Vermutung für Kanaltori, J. Reine Angew. Math. 430 (1992), 21-34. MR 1172905 (95g:53067)
  • 8. R. Kusner, Comparison surfaces for the Willmore problem, Pac. J. Math. 138 (1989), 317-345. MR 0996204 (90e:53013)
  • 9. P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math 69 (1982), 269-291. MR 0674407 (84f:53049)
  • 10. U. Pinkall, Dupin hypersurfaces, Math. Ann. 270 (1985), 427-440. MR 0774368 (86e:53044)
  • 11. T. Takasu, Differentialgeometrien in den Kugelräumen, Bd. I, Tagaido Publ. Co., Kyoto, and Hafner Publ. Co., New York, 1938.
  • 12. G. Thomsen, Über konforme Geometrie I: Grundlagen der konformen Flächentheorie, Hamb. Math. Abh. 3 (1923), 31-56.
  • 13. J. H. White, A global invariant of conformal mappings in space, Proc. Amer. Math. Soc. 38 (1973), 162-164. MR 0324603 (48:2954)
  • 14. T. J. Willmore, Note on embedded surfaces, An. Sti. Univ. Al. I. Cuza Iasi, N. Ser., Sect. Ia Mat. 11B (1965), 493-496. MR 0202066 (34:1940)
  • 15. -, Surfaces in conformal geometry, Ann. Global Anal. Geom 18 (2000), 255-264. MR 1795097 (2001i:53099)

Review Information:

Reviewer: Thomas E. Cecil
Affiliation: College of the Holy Cross
Email: cecil@mathcs.holycross.edu
Journal: Bull. Amer. Math. Soc. 42 (2005), 549-554
MSC (2000): Primary 53A30
Published electronically: July 1, 2005
Review copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society