Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: M. J. Ablowitz, B. Prinari and A. D. Trubatch
Title: Discrete and continuous nonlinear Schrödinger systems
Additional book information: Cambridge Univ. Press, Cambridge, 2004, ix+257 pp., ISBN 0-521-53437-2, £38.00

References [Enhancements On Off] (What's this?)

  • 1. M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, vol. 149, Cambridge University Press, Cambridge, 1991. MR 1149378
  • 2. M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Note Series, vol. 302, Cambridge University Press, Cambridge, 2004. MR 2040621
  • 3. Catherine Sulem and Pierre-Louis Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Self-focusing and wave collapse. MR 1696311
  • 4. A. Hasegawa, Solitons in Optical Communications, Clarendon Press (Oxford, NY, 1995).
  • 5. B.A. Malomed, Variational methods in nonlinear fiber optics and related fields, Progress in Optics 43 (2002) 69-191.
  • 6. V.E. Zakharov, Collapse and Self-focusing of Langmuir Waves,
    Handbook of Plasma Physics, (M.N. Rosenbluth and R.Z. Sagdeev, eds.), vol. 2 (A.A. Galeev and R.N. Sudan, eds.) 81-121, Elsevier (1984).
  • 7. V.E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972) 908-914.
  • 8. T.B. Benjamin and J.E. Feir, The disintegration of wavetrains in deep water, Part 1, J. Fluid Mech. 27 (1967) 417-430.
  • 9. M. Onorato, A.R. Osborne, M. Serio, and S. Bertone, Freak waves in random oceanic sea states, Phys. Rev. Lett. 86 (2001) 5831-5834.
  • 10. H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd and J.S. Aitchinson, Discrete Spatial Optical Solitons in Waveguide Arrays, Phys. Rev. Lett. 81 (1998) 3383-3386; H. Eisenberg, Y. Silberberg, R. Morandotti and J.S. Aitchinson, Diffraction Management 85 (2000) 1863-1866.
  • 11. J. Meier, G.I. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Nonlinear Optical Beam Interactions in Waveguide Arrays, Phys. Rev. Lett. 93 (2004) 093903.
  • 12. F. Dalfovo, S. Giorgini, L.P. Pitaveskii and S. Stringari, Rev. Mod. Phys. 71 (1999) 463-512.
  • 13. P.G. Kevrekidis and D.J. Frantzeskakis, Pattern forming dynamical instabilities of Bose-Einstein condensates, Mod. Phys. Lett. B 18 (2004) 173-202; P.G. Kevrekidis, R. Carretero-González, D.J. Frantzeskakis, I.G. Kevrekidis, Vortices in Bose-Einstein condensates: some recent developments, Mod. Phys. Lett. B 18 (2004) 1481-1505.
  • 14. V.A. Brazhnyi and V.V. Konotop, Theory of nonlinear matter waves in optical lattices, Mod. Phys. Lett. B 18 (2004) 627-651.
  • 15. G. L. Alfimov, P. G. Kevrekidis, V. V. Konotop, and M. Salerno, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential, Phys. Rev. E (3) 66 (2002), no. 4, 046608, 6. MR 1935204, https://doi.org/10.1103/PhysRevE.66.046608
  • 16. Mark J. Ablowitz and Ziad H. Musslimani, Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: a unified approach, Phys. D 184 (2003), no. 1-4, 276–303. Complexity and nonlinearity in physical systems (Tucson, AZ, 2001). MR 2030690, https://doi.org/10.1016/S0167-2789(03)00226-4
  • 17. B.P. Anderson and M.A. Kasevich, Macroscopic quantum interference from atomic tunnel arrays, Science 282 (1998) 1686-1689.
  • 18. K.S. Strecker, G.B. Partridge, A.G. Truscott, and R.G Hulet, Formation and propagation of matter wave soliton trains, Nature 417 (2002) 150-153.
  • 19. H. Ott, J. Fortágh, S. Kraft, A. Günther, D. Komma, and C. Zimmermann, Nonlinear dynamics of a Bose-Einstein condensate in a magnetic waveguide, Phys. Rev. Lett. 91 (2003) 040402.
  • 20. A.S. Desyatnikov, L. Torner and Yu.S. Kivshar, Optical vortices and vortex solitons, nlin.PS/0501026.
  • 21. R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity 7 (1994), no. 6, 1623–1643. MR 1304442
  • 22. M. J. Ablowitz and J. F. Ladik, Nonlinear differential-difference equations, J. Mathematical Phys. 16 (1975), 598–603. MR 0377223, https://doi.org/10.1063/1.522558
    M. J. Ablowitz and J. F. Ladik, Nonlinear differential-difference equations and Fourier analysis, J. Mathematical Phys. 17 (1976), no. 6, 1011–1018. MR 0427867, https://doi.org/10.1063/1.523009
  • 23. Todd Kapitula and Panayotis Kevrekidis, Stability of waves in discrete systems, Nonlinearity 14 (2001), no. 3, 533–566. MR 1830906, https://doi.org/10.1088/0951-7715/14/3/306
  • 24. S.V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP 38 (1974) 248-253.
  • 25. Mark J. Ablowitz, Yasuhiro Ohta, and A. David Trubatch, On discretizations of the vector nonlinear Schrödinger equation, Phys. Lett. A 253 (1999), no. 5-6, 287–304. MR 1681692, https://doi.org/10.1016/S0375-9601(99)00048-1
  • 26. Yu.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press (San Diego, 2003).
  • 27. Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, International Series of Monographs on Physics, vol. 116, The Clarendon Press, Oxford University Press, Oxford, 2003. MR 2012737
  • 28. C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press (Cambridge, 2002).

Review Information:

Reviewer: P. G. Kevrekidis
Affiliation: University of Massachusetts
Email: kevrekid@math.umass.edu
Journal: Bull. Amer. Math. Soc. 43 (2006), 127-132
MSC (2000): Primary 35Q55
Published electronically: July 8, 2005
Review copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society