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An association scheme (or a scheme as we shall say briefly) is a mathematical
structure that has been created by statisticians [3], which, during the last three
decades, has been intensively investigated by combinatorialists [2], and which, fi-
nally, turned out to be an algebraic object generalizing in a particularly natural
way the concept of a group [4], [8].

The definition of a scheme could easily catch the interest of an undergraduate
student: given a set X, one calls a partition S of the cartesian product X × X a
scheme on X if S satisfies the following three conditions:

• The identity 1X := {(x, x) | x ∈ X} belongs to S.
• For each element s in S, s∗ := {(y, z) | (z, y) ∈ s} belongs to S.
• Let s be an element in S, and let (y, z) be an element in s. Then, for any

two elements p and q in S, the number of elements x with (y, x) ∈ p and
(x, z) ∈ q does not depend on y or z, only on s.

The cardinal numbers arising from the last condition are usually denoted by apqs

and called the structure constants of S.
The elements of S are defined to be subsets of X ×X. This means that they are

binary relations on X. Thus, assuming (for the moment) that X is a finite set, the
elements of S can be viewed as 0-1-matrices. Let us (in this case) denote by Ms the
0-1-matrix which is associated (in the usual way) to the element s in S. It is easy
to see that the last condition is equivalent to the fact that, for any two elements p
and q in S,

MpMq =
∑

s∈S

apqsMs.

In particular, the matrices Ms with s ∈ S form a linear basis of the (semisimple)
F -algebra FS generated by the matrices Ms (F a field of characteristic 0).

It is clear that the structure constants ass∗1 have a distinguished meaning. In-
deed, it is easy to see that, for each element s in S, ns := ass∗1 is the valency of s
if s is viewed as a (directed) graph on X.

Let us look at an example. Let V stand for the ten subsets of cardinality 2 of a
given set of cardinality 5. The Petersen graph is defined to be the graph on V which
connects two elements in V by an edge if and only if their set theoretic intersection
is empty.

The Petersen graph gives rise to an association scheme. By p we denote the set
of all pairs of elements in V having distance 1, and by q we denote the set of all
pairs of elements in V having distance 2. Then P := {1V , p, q} is a scheme on V
(with np = 2 and nq = 6). Clearly, we also have p∗ = p and q∗ = q, and a scheme
S which satisfies s∗ = s for each of its elements s is called symmetric. It is easy
to see that the (above-mentioned) associative algebra FS is commutative if S is
symmetric. Thus, the representation theory of FS reduces to computations with
eigenvalues.
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The scheme P which we obtained from the Petersen graph has another interesting
feature. One easily computes that M2

p = Mq + 3M1V
, and schemes satisfying a

polynomial equation similar to this one always come from so-called distance-regular
graphs. (The Petersen graph is distance-regular.) The interest of combinatorialists
in symmetric schemes originates from their interest in distance-regular graphs, since
distance-regular graphs are related to certain aspects of codes and designs.

Let us now look at a major variety of examples. Let G be a group. For each
element g in G, we define g̃ to be the set of all pairs (e, f) where e and f are
elements in G satisfying eg = f . It is easy to see that the set of all sets g̃ with
g ∈ G is a scheme on G. Moreover, each element of this scheme has valency 1, and
nonempty subsets of a scheme in which each element has valency 1 are called thin.
This shows that each group gives rise to a thin scheme. It does not require much
to see that, conversely, each thin scheme gives rise to a group and that these two
constructions are inverse to each other. Thus, the class of groups can be viewed (in
a natural way) as a distinguished class of schemes, namely as the class of the thin
schemes.

It is tempting to consider this observation as a justification for far-reaching
and ambitious conjectures. One would like to know to which extent basic group
theoretic definitions and results can be generalized to scheme theory in such a way
that the thin version of the scheme theoretic generalizations correspond to the group
theoretic originals one starts with.

In fact, scheme theory allows us to do quite a few steps in this direction.
There is a Lagrange Theorem for schemes, there is a Homomorphism Theorem for
schemes, there are two Isomorphism Theorems, there is a Jordan-Hölder Theorem
for schemes; and even Sylow’s Theorem [6] on finite groups can be generalized in a
natural way to scheme theory. Moreover, all of these theorems satisfy the above-
mentioned requirement that their thin version is exactly the group theoretic result
one starts with.

The generalization of Lagrange’s observation (that the order of a subgroup of
a finite group G divides the order of G) to scheme theory is easy to understand.
One just has to find the appropriate generalization of the notion of a subgroup of
a group. In order to establish this generalization one defines, for any two elements
p and q of a scheme S, pq to be the set of all elements s in S such that apqs �= 0.
A nonempty subset R of a scheme S is called closed if, for any two elements p and
q in R, p∗q ⊆ R.1 If S is thin, closed subsets of S correspond to subgroups of the
group which corresponds to S.

For each nonempty subset R of S, we now write nR in order to denote the sum
of the cardinal numbers nr with r ∈ R and call nR the valency of R. If S is thin,
we have nT = |T | for each closed subset T of S. Thus, in this case, Lagrange’s
Theorem on finite groups says that, for each closed subset T of a scheme S of finite
valency, nT divides nS. This divisibility condition holds, in fact, for any scheme S
of finite valency and any closed subset T of S (and not only for thin schemes of
finite valency).

The above-mentioned generalization of Sylow’s theorems to schemes is particu-
larly amazing. In order to look at this generalization we fix a prime number p and a
scheme S. An element s in S is called p-valenced if ns is a power of p. A subset of S

1Recall that p∗ is defined to be the set of all pairs (y, z) of elements in X such that (z, y) ∈ p.
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is called p-valenced if each of its elements is p-valenced, and a nonempty p-valenced
subset R of S is called a p-subset if nR is a power of p.

Assume nS to be finite, and let Sylp(S) stand for the set of all closed p-subsets
T of S such that p does not divide nS/nT . Then, if S is p-valenced, |Sylp(S)| ≡ 1
(p); cf. [5]. Since thin schemes are obviously p-valenced for each prime number p,
this result generalizes Sylow’s famous theorems on finite groups.

Let us now briefly show how far Tits’ theory of buildings can be considered as
part of scheme theory. In order to do so we fix a scheme S. For each subset R of
S, we define 〈R〉 to be the intersection of all closed subsets of S which contain R.
An element s of S will be called an involution if |〈{s}〉| = 2.2

Let us fix a set L of involutions of S, and let us assume that 〈L〉 = S. Simulating
group theoretic reasoning, one easily proves that S is the union of the sets Ln, n a
nonnegative integer. Thus, for each element s in S, there exists a smallest integer
n such that s ∈ Ln. We denote this element by �(s).

For each element q in S, we define SL(q) to be the set of all elements p in S such
that there exists an element r in pq with �(r) = �(p)+ �(q). One calls S constrained
with respect to L if, for any two elements q in S and p in SL(q), |pq| = 1.

Let us assume S to be constrained with respect to L. The scheme S is called
a Coxeter scheme with respect to L if, for any three elements h, k in L and s in
SL(k), h ∈ SL(s) implies that hs ⊆ sk ∪ SL(k).3

We saw earlier that groups may be viewed as thin schemes. Similarly, one can
prove that buildings (in the sense of Tits) may be viewed as Coxeter schemes.
(The identification is based on the concept of a coset geometry.) Referring to
this identification, one may wish to know how Tits’ famous result on buildings of
spherical type [7] sounds scheme theoretically.

Assume that S is a Coxeter scheme with respect to L. Assume that S has finitely
many elements and that L has at least three elements, none of them thin. Tits’
theorem says then that S arises from a (simple algebraic or classical) group.

There are several other sufficient conditions for schemes to arise from groups,
and the question which schemes (precisely) arise from groups is one of the more
challenging questions in scheme theory.

The fact that, indeed, large classes of schemes arise from groups seems to be a
hint that there is more behind the relationship between groups and schemes than
we presently know. Who knows, maybe one day in the future, geometric arguments
in finite group theory can be replaced with a fully developed scheme theory and
classification theorems in group theory will emerge naturally as parts of a well-
understood scheme theory.

Presently, we are still far away from this. The literature about scheme theory is
quite limited and still modest in comparison with other branches of algebra. Under
these circumstances, it is gratifying to learn that Rosemary Bailey wrote a book
about schemes (cf. [1]), and we curiously ask ourselves how her book Association
Schemes. Designed Experiments, Algebra and Combinatorics fits into the picture.

The author gives the answer to this question right in the beginning of the preface:
the book is supposed to bridge a gap, she says, between practicing statisticians and
pure mathematicians. According to our introductory remarks this tells us that the

2Clearly, involutions of thin schemes correspond to group theoretic involutions.
3Again, the definition of Coxeter schemes is made in such a way that thin Coxeter schemes

correspond to Coxeter groups.
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author comes back to the historical roots of scheme theory, namely to commutative
association schemes in statistics. And here, the author shows how much theory and
terminology have developed since the relationship between schemes and statistics
was first considered.

The content of Bailey’s book is an interesting collection of interplays between
statistics and scheme theory. It starts with three chapters of basic scheme theory.
The definition (carefully presented under all possible aspects) comes first, together
with a selection of standard examples in commutative scheme theory (the Petersen
graph included). The second chapter is a standard introduction to basic (real-
valued) representation theoretic aspects of finite commutative schemes. The third
chapter deals with direct products of finite commutative schemes, wreath products,
and combinations of the two. At the end of the third chapter, we see how schemes
are used in order to design experiments.

The next four chapters refer only loosely to the first three chapters. They bring
the terminology of statistics into the game and deal with incomplete-block designs,
with partial balance, with orthogonal block structures, and with the relationship
between the notion of a design and the notion of an orthogonal block structure.
Key words are efficiency factors, estimating the treatment parameters, variance of
certain estimators, canonical efficiency factors of partially balanced incomplete-
block designs, efficiency of estimation, and randomization of the choice of designs.

In the last four of the eleven theoretical chapters of the book, the author comes
back to a more abstract approach to schemes. Indeed, Chapters 8, 10, and 11 can
be considered as a contribution to the theory of symmetric finite schemes. The
author talks about the correspondence between certain partitions of a finite group
G and schemes defined on G × G via convolution, about subschemes and quotient
schemes of finite commutative schemes, and about the question of how schemes on
the same set are related.

Bailey’s book concludes with a chapter on possible generalizations of some of the
topics which have been discussed in the book (on the statistical side as well as on
the scheme theoretic side) and with a chapter containing a collection of names, little
stories, references, and concepts which are related to schemes and/or the design of
experiments which have been discussed in the previous chapters.

The (main) title of Bailey’s book is Association Schemes. However, everybody
who picks up Bailey’s book will realize immediately that this title does not exactly
reflect the content of the book. In fact, taking into account the efforts which have
been made by so many graph theorists, combinatorialists, and algebraists in order
to explore the notion of a scheme and to understand its significance, one cannot
call Bailey’s book a book about association schemes. It would be more appropriate
to look at it as an introduction to commutative association schemes as they occur
in designed experiments. A title like Association Schemes in Designed Experiments
or Commutative Association Schemes in Designed Experiments would describe the
content of Bailey’s book more precisely. Association schemes as they occur in
designed experiments form the heart of the book, as the author says correctly in
the preface. As such Rosemary Bailey’s book is a valuable contribution to one of the
important aspects of commutative scheme theory: the application of commutative
scheme theory to statistics. Scheme theorists will be grateful for this contribution,
because it fills one of the many gaps in the global view of schemes and their central
role in mathematics.
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